Behnke-Stein theorem for analytic spaces
HTML articles powered by AMS MathViewer
- by Alessandro Silva
- Trans. Amer. Math. Soc. 199 (1974), 317-326
- DOI: https://doi.org/10.1090/S0002-9947-1974-0367286-2
- PDF | Request permission
Addendum: Trans. Amer. Math. Soc. 212 (1975), 417-418.
Abstract:
The notion of $q$-Runge pair is extended to reduced complex analytic spaces. A necessary and sufficient condition for a pair of $n$-dimensional analytic spaces to be an $n$-Runge pair is proved and it is shown that this result extends a Behnke-Stein theorem when $n = 1$. A topological property of $q$-Runge pairs of spaces is also proved.References
- Aldo Andreotti and Hans Grauert, Théorème de finitude pour la cohomologie des espaces complexes, Bull. Soc. Math. France 90 (1962), 193–259 (French). MR 150342, DOI 10.24033/bsmf.1581
- Aldo Andreotti and Raghavan Narasimhan, A topological property of Runge pairs, Ann. of Math. (2) 76 (1962), 499–509. MR 140714, DOI 10.2307/1970370
- A. Cassa, Coomologia separata sulle varietà analitiche complesse, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (3) 25 (1971), 291–323 (Italian). MR 357851
- Aldo Ferrari, Cohomology and holomorphic differential forms on complex analytic spaces, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (3) 24 (1970), 65–77. MR 274810
- Joseph Le Potier, Une propriété topologique des espaces $q$-convexes, Bull. Soc. Math. France 98 (1970), 319–328 (French). MR 281950, DOI 10.24033/bsmf.1705
- Jean-Pierre Ramis and Gabriel Ruget, Complexe dualisant et théorèmes de dualité en géométrie analytique complexe, Inst. Hautes Études Sci. Publ. Math. 38 (1970), 77–91 (French). MR 279338, DOI 10.1007/BF02684652
- J. P. Ramis, G. Ruget, and J. L. Verdier, Dualité relative en géométrie analytique complexe, Invent. Math. 13 (1971), 261–283 (French). MR 308439, DOI 10.1007/BF01406078
- Hans-Jörg Reiffen, Riemannsche Hebbarkeitssätze für Cohomologieklassen mit kompaktem Träger, Math. Ann. 164 (1966), 272–279 (German). MR 197779, DOI 10.1007/BF01360251
- Alessandro Silva, Successioni crescenti di $Q$-coppie di Runge di varietà analitiche complesse, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (3) 27 (1973), 431–440 (1974) (Italian). MR 382719
- Alessandro Silva, An $n$-Runge approximation theorem, Boll. Un. Mat. Ital. (4) 8 (1973), 286–289 (English, with Italian summary). MR 0346192
- Yum-tong Siu, Analytic sheaf cohomology groups of dimension $n$ of $n-dimensional$ $complex$ $spaces.$, Trans. Amer. Math. Soc. 143 (1969), 77–94. MR 252684, DOI 10.1090/S0002-9947-1969-0252684-6
- G. Sorani, Homologie des $q$-paires de Runge, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (3) 17 (1963), 319–332 (French). MR 165143
Bibliographic Information
- © Copyright 1974 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 199 (1974), 317-326
- MSC: Primary 32E15
- DOI: https://doi.org/10.1090/S0002-9947-1974-0367286-2
- MathSciNet review: 0367286