The Riemann problem for general $2\times 2$ conservation laws
HTML articles powered by AMS MathViewer
- by Tai Ping Liu
- Trans. Amer. Math. Soc. 199 (1974), 89-112
- DOI: https://doi.org/10.1090/S0002-9947-1974-0367472-1
- PDF | Request permission
Abstract:
The Riemann Problem for a system of hyperbolic conservation laws of form \[ (1)\quad \begin {array}{*{20}{c}} {{u_t} + f{{(u,\upsilon )}_x} = 0,} \\ {{\upsilon _t} + g{{(u,\upsilon )}_x} = 0} \\ \end {array} \] with arbitrary initial constant states \[ (2)\quad ({u_0}(x),{v_0}(x)) = \left \{ {\begin {array}{*{20}{c}} {({u_l},{v_l}),\quad x < 0,} \\ {({u_r},{v_r}),\quad x > 0,} \\ \end {array} } \right .\] is considered. We assume that ${f_\upsilon } < 0,{g_u} < 0$. Let ${l_i}({r_i})$ be the left (right) eigenvectors of $dF \equiv d(f,g)$ for eigenvalues ${\lambda _1} < {\lambda _2}$. Instead of assuming the usual convexity condition $d{\lambda _i}({r_i}) \ne 0,i = 1,2$ we assume that $d{\lambda _i}({r_i}) = 0$ on disjoint union of $1$-dim manifolds in the $(u,\upsilon )$ plane. Oleinik’s condition (E) for single equation is extended to system (1); again call this new condition (E). Our condition (E) implies Lax’s shock inequalities and, in case $d{\lambda _i}({r_i}) \ne 0$, the two are equivalent. We then prove that there exists a unique solution to the Riemann Problem (1) and (2) in the class of shocks, rarefaction waves and contact discontinuities which satisfies condition (E).References
- James Glimm, Solutions in the large for nonlinear hyperbolic systems of equations, Comm. Pure Appl. Math. 18 (1965), 697–715. MR 194770, DOI 10.1002/cpa.3160180408
- J. A. Smoller and J. L. Johnson, Global solutions for an extended class of hyperbolic systems of conservation laws, Arch. Rational Mech. Anal. 32 (1969), 169–189. MR 236527, DOI 10.1007/BF00247508
- P. D. Lax, Hyperbolic systems of conservation laws. II, Comm. Pure Appl. Math. 10 (1957), 537–566. MR 93653, DOI 10.1002/cpa.3160100406
- Takaaki Nishida, Global solution for an initial boundary value problem of a quasilinear hyperbolic system, Proc. Japan Acad. 44 (1968), 642–646. MR 236526
- Takaaki Nishida and Joel A. Smoller, Solutions in the large for some nonlinear hyperbolic conservation laws, Comm. Pure Appl. Math. 26 (1973), 183–200. MR 330789, DOI 10.1002/cpa.3160260205
- O. A. Oleĭnik, On the uniqueness of the generalized solution of the Cauchy problem for a non-linear system of equations occurring in mechanics, Uspehi Mat. Nauk (N.S.) 12 (1957), no. 6(78), 169–176 (Russian). MR 0094543
- J. A. Smoller, On the solution of the Riemann problem with general step data for an extended class of hyperbolic systems, Michigan Math. J. 16 (1969), 201–210. MR 247283, DOI 10.1307/mmj/1029000262
- J. A. Smoller, A uniqueness theorem for Riemann problems, Arch. Rational Mech. Anal. 33 (1969), 110–115. MR 237961, DOI 10.1007/BF00247755
Bibliographic Information
- © Copyright 1974 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 199 (1974), 89-112
- MSC: Primary 35L65
- DOI: https://doi.org/10.1090/S0002-9947-1974-0367472-1
- MathSciNet review: 0367472