“Image of a Hausdorff arc” is cyclically extensible and reducible
HTML articles powered by AMS MathViewer
- by J. L. Cornette
- Trans. Amer. Math. Soc. 199 (1974), 253-267
- DOI: https://doi.org/10.1090/S0002-9947-1974-0375257-5
- PDF | Request permission
Abstract:
It is shown that a Hausdorff continuum $S$ is the continuous image of an arc (respectively arcwise connected) if and only if each cyclic element of $S$ is the continuous image of an arc (respectively, arcwise connected). Also, there is given an analogue to the metric space cyclic chain approximation theorem of G. T. Whyburn which applies to locally connected Hausdorff continua.References
- C. E. Capel, Inverse limit spaces, Duke Math. J. 21 (1954), 233–245. MR 62417, DOI 10.1215/S0012-7094-54-02124-9
- J. L. Cornette and B. Lehman, Another locally connected Hausdorff continuum not connected by ordered continua, Proc. Amer. Math. Soc. 35 (1972), 281–284. MR 307200, DOI 10.1090/S0002-9939-1972-0307200-2
- Sibe Mardešić, On the Hahn-Mazurkiewicz theorem in nonmetric spaces, Proc. Amer. Math. Soc. 11 (1960), 929–937. MR 117688, DOI 10.1090/S0002-9939-1960-0117688-X
- Gordon Thomas Whyburn, Analytic Topology, American Mathematical Society Colloquium Publications, Vol. 28, American Mathematical Society, New York, 1942. MR 0007095, DOI 10.1090/coll/028
- Gordon T. Whyburn, Cut points in general topological spaces, Proc. Nat. Acad. Sci. U.S.A. 61 (1968), 380–387. MR 242129, DOI 10.1073/pnas.61.2.380
Bibliographic Information
- © Copyright 1974 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 199 (1974), 253-267
- MSC: Primary 54F30
- DOI: https://doi.org/10.1090/S0002-9947-1974-0375257-5
- MathSciNet review: 0375257