Coproducts and some universal ring constructions
HTML articles powered by AMS MathViewer
- by George M. Bergman
- Trans. Amer. Math. Soc. 200 (1974), 33-88
- DOI: https://doi.org/10.1090/S0002-9947-1974-0357503-7
- PDF | Request permission
Abstract:
Let $R$ be an algebra over a field $k$, and $P,Q$ be two nonzero finitely generated projective $R$-modules. By adjoining further generators and relations to $R$, one can obtain an extension $S$ of $R$ having a universal isomorphism of modules, $i:P{ \otimes _R}S \cong Q{ \otimes _R}S$. We here study this and several similar constuctions, including (given a single finitely generated projective $R$-module $P$) the extension $S$ of $R$ having a universal idempotent module-endomorphism $e:P \otimes S \to P \otimes S$, and (given a positive integer $n$) the $k$-algebra $S$ with a universal $k$-algebra homomorphism of $R$ into its $n \times n$ matrix ring, $f:R \to {\mathfrak {m}_n}(S)$. A trick involving matrix rings allows us to reduce the study of each of these constructions to that of a coproduct of rings over a semisimple ring ${R_0}$ ($( = k \times k \times k,k \times k$, and $k$ respectively in the above cases), and hence to apply the theory of such coproducts. As in that theory, we find that the homological properties of the construction are extremely good: The global dimension of $S$ is the same as that of $R$ unless this is 0, in which case it can increase to 1, and the semigroup of isomorphism classes of finitely generated projective modules is changed only in the obvious fashion; e.g., in the first case mentioned, by the adjunction of the relation $[P] = [Q]$. These results allow one to construct a large number of unusual examples. We discuss the problem of obtaining similar results for some related constructions: the adjunction to $R$ of a universal inverse to a given homomorphism of finitely generated projective modules, $f:P \to Q$, and the formation of the factor-ring $R/{T_P}$ by the trace ideal of a given finitely generated projective $R$-module $P$ (in other words, setting $P = 0$). The idea for a category-theoretic generalization of the ideas of the paper is also sketched.References
- S. A. Amitsur, Embeddings in matrix rings, Pacific J. Math. 36 (1971), 21β29. MR 276270
- Hyman Bass, Algebraic $K$-theory, W. A. Benjamin, Inc., New York-Amsterdam, 1968. MR 0249491
- George M. Bergman, Hereditary commutative rings and centres of hereditary rings, Proc. London Math. Soc. (3) 23 (1971), 214β236. MR 309918, DOI 10.1112/plms/s3-23.2.214 β, Infinite multiplication of ideals in ${\aleph _0}$-hereditary rings, J. Algebra 34 (1973), 56-70. MR 46 #9085.
- George M. Bergman, Rational relations and rational identities in division rings. I, J. Algebra 43 (1976), no.Β 1, 252β266. MR 432697, DOI 10.1016/0021-8693(76)90159-9 β, Some examples in p.i. ring theory, Israel J. Math. (to appear).
- George M. Bergman, Modules over coproducts of rings, Trans. Amer. Math. Soc. 200 (1974), 1β32. MR 357502, DOI 10.1090/S0002-9947-1974-0357502-5 β, The diamond lemma for ring theory (to appear).
- George M. Bergman and Lance W. Small, P.I. degrees and prime ideals, J. Algebra 33 (1975), 435β462. MR 360682, DOI 10.1016/0021-8693(75)90112-X
- A. J. Bowtell, On a question of Malβ²cev, J. Algebra 7 (1967), 126β139. MR 230750, DOI 10.1016/0021-8693(67)90071-3
- W. Edwin Clark and George M. Bergman, The automorphism class group of the category of rings, J. Algebra 24 (1973), 80β99. MR 311648, DOI 10.1016/0021-8693(73)90154-3
- P. M. Cohn, Universal algebra, Harper & Row, Publishers, New York-London, 1965. MR 0175948
- P. M. Cohn, Some remarks on the invariant basis property, Topology 5 (1966), 215β228. MR 197511, DOI 10.1016/0040-9383(66)90006-1
- P. M. Cohn, The embedding of firs in skew fields, Proc. London Math. Soc. (3) 23 (1971), 193β213. MR 297814, DOI 10.1112/plms/s3-23.2.193
- P. M. Cohn, Dependence in rings. II. The dependence number, Trans. Amer. Math. Soc. 135 (1969), 267β279. MR 279122, DOI 10.1090/S0002-9947-1969-0279122-1
- P. M. Cohn, Free rings and their relations, London Mathematical Society Monographs, No. 2, Academic Press, London-New York, 1971. MR 0371938 β, Rings of fractions, Lecture Notes, University of Alberta, Edmonton, Alberta, Canada, 1972. β, Localization in semifirs (to appear).
- Samuel Eilenberg, Hirosi Nagao, and Tadasi Nakayama, On the dimension of modules and algebras. IV. Dimension of residue rings of hereditary rings, Nagoya Math. J. 10 (1956), 87β95. MR 78981
- K. L. Fields, On the global dimension of residue rings, Pacific J. Math. 32 (1970), 345β349. MR 271166
- P. Freyd, Algebra valued functors in general and tensor products in particular, Colloq. Math. 14 (1966), 89β106. MR 195920, DOI 10.4064/cm-14-1-89-106
- John R. Isbell, Epimorphisms and dominions. IV, J. London Math. Soc. (2) 1 (1969), 265β273. MR 257120, DOI 10.1112/jlms/s2-1.1.265
- Abraham A. Klein, Rings nonembeddable in fields with multiplicative semi-groups embeddable in groups, J. Algebra 7 (1967), 100β125. MR 230749, DOI 10.1016/0021-8693(67)90070-1
- Abraham A. Klein, A remark concerning embeddability of rings in fields, J. Algebra 21 (1972), 271β274. MR 299622, DOI 10.1016/0021-8693(72)90022-1
- W. G. Leavitt, Modules without invariant basis number, Proc. Amer. Math. Soc. 8 (1957), 322β328. MR 83986, DOI 10.1090/S0002-9939-1957-0083986-1
- Saunders Mac Lane, Categories for the working mathematician, 2nd ed., Graduate Texts in Mathematics, vol. 5, Springer-Verlag, New York, 1998. MR 1712872
- A. Malcev, Γber die Einbettung von assoziativen Systemen in Gruppen, Rec. Math. [Mat. Sbornik] N.S. 6 (48) (1939), 331β336 (Russian, with German summary). MR 0002152
- Barry Mitchell, Rings with several objects, Advances in Math. 8 (1972), 1β161. MR 294454, DOI 10.1016/0001-8708(72)90002-3
- L. Silver, Noncommutative localizations and applications, J. Algebra 7 (1967), 44β76. MR 217114, DOI 10.1016/0021-8693(67)90067-1
- L. A. Skornjakov, On Cohn rings, Algebra i Logika Sem. 4 (1965), no.Β 3, 5β30 (Russian). MR 0193105
- Lance W. Small, Hereditary rings, Proc. Nat. Acad. Sci. U.S.A. 55 (1966), 25β27. MR 186720, DOI 10.1073/pnas.55.1.25
- George Maxwell, Axioms for finite and infinite classical Lie algebras, J. Algebra 32 (1974), no.Β 3, 467β475. MR 389998, DOI 10.1016/0021-8693(74)90152-5
- Friedhelm Waldhausen, Whitehead groups of generalized free products, Algebraic $K$-theory, II: βClassicalβ algebraic $K$-theory and connections with arithmetic (Proc. Conf., Battelle Memorial Inst., Seattle, Wash., 1972) Lecture Notes in Math., Vol. 342, Springer, Berlin, 1973, pp.Β 155β179. MR 0370576
Bibliographic Information
- © Copyright 1974 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 200 (1974), 33-88
- MSC: Primary 16A64
- DOI: https://doi.org/10.1090/S0002-9947-1974-0357503-7
- MathSciNet review: 0357503