THE p-CLASS IN A DUAL B^*-ALGEBRA

BY

PAK-KEN WONG

ABSTRACT. In this paper, we introduce and study the class A_p ($0 < p < \infty$) in a dual B^*-algebra A. We show that, for $1 < p < \infty$, A_p is a dual A^*-algebra which is a dense two-sided ideal of A. If $1 < p < \infty$, we obtain that A_p is uniformly convex and hence reflexive. We also identify the conjugate space of A_p ($1 < p < \infty$). This is a generalization of the class C_p of compact operators on a Hilbert space.

1. Introduction. Let H be a Hilbert space and $LC(H)$ the algebra of all compact operators on H. Then $LC(H)$ is a simple dual B^*-algebra and every simple dual B^*-algebra is of this form. The class C_p of compact operators in $LC(H)$ has many interesting properties and has been studied in various articles (e.g., see [2], [3] and [4]). The present work is an attempt to introduce a similar class of spaces in an arbitrary dual B^*-algebra.

Let A be a dual B^*-algebra. The class A_p ($0 < p < \infty$) is introduced in §3. After establishing some crucial inequalities, we show that A_p ($1 < p < \infty$) is a dual A^*-algebra which is a dense two-sided ideal of A. In §4, we study the algebras A_1 and A_2. We obtain that every proper H^*-algebra is of the form A_2 and $A_1 = \{xy: x, y \in A_2\}$. §5 is devoted to showing the uniform convexity in A_p ($1 < p < \infty$). Finally we identify the conjugate space of A_p ($1 < p < \infty$) in §6.

In this paper, our approach is elementary and the techniques are not new. In fact, they are borrowed from [3], [4], [10] and [11]. The author is grateful for these invaluable references.

2. Notation and preliminaries. Definitions not explicitly given are taken from Rickart's book [7].

For any set E in a Banach algebra A, let $l(E)$ and $r(E)$ denote the left and right annihilators of E, respectively. Then A is called a dual algebra.
if for every closed right ideal \(R \) and every closed left ideal \(I \), we have \(r(I(R)) = R \) and \(l(r(I)) = I \). See [5] and [7] for some of its properties.

An idempotent \(e \) in a Banach algebra \(A \) is said to be minimal if \(eAe \) is a division algebra. In case \(A \) is semisimple, this is equivalent to saying that \(Ae \) (\(eA \)) is a minimal left (right) ideal of \(A \).

Let \(A \) be a Banach algebra. A bounded linear operator \(S \) on \(A \) is called a right centralizer if \(S(xy) = (Sx)y \) for all \(x, y \) in \(A \). For each \(a \) in \(A \), the operator \(L_{a}: x \to ax \ (x \in A) \) is a right centralizer on \(A \).

Let \(H \) be a Hilbert space with an inner product \((\cdot, \cdot)\). If \(x \) and \(y \) are elements in \(H \), then \(x \otimes y \) will denote the operator on \(H \) defined by \((x \otimes y)(h) = (h, y)x \) for all \(h \) in \(H \).

In this paper, all algebras and linear spaces under consideration are over the field of complex numbers.

NOTATION. In this paper, \(A \) will denote a dual \(B^* \)-algebra with norm \(\| \cdot \| \).

We shall oftter use, without explicitly mentioning, the following fact: For any orthogonal family \(\{e_{\alpha}\} \) of hermitian idempotents of \(A \), \(\Sigma_{\alpha} e_{\alpha}x \) is summable in \(A \), and especially when \(\{e_{\alpha}\} \) is a maximal family, \(x = \Sigma_{\alpha} e_{\alpha}x \) for all \(x \) in \(A \) (see [5, p. 30, Theorem 16]).

Let \(B \) be a closed commutative \(\ast \)-subalgebra of \(A \) and \(e \) a minimal idempotent in \(B \). It follows easily from [7, p. 261, Lemma (4.10.1)] that \(e \) is hermitian. Also if \(f \) is any other minimal idempotent in \(B \), then \(fe = ef = 0 \). If \(B \) is maximal, then \(e \) is a minimal idempotent in \(A \).

LEMMA 2.1. Let \(e \) be a hermitian minimal idempotent in \(A \), \(a \in A \), and \(\{f_{\beta}\} \) a maximal orthogonal family of hermitian minimal idempotents in \(A \). Then \(\|ae\|^2 = \Sigma_{\beta} \|f_{\beta}ae\|^2 \).

PROOF. Since \(A \) is a dual \(B^* \)-algebra, it follows from [7, p. 259, Theorem (4.9.24)] and [7, p. 269, Corollary (4.10.20)] that \(A = (\Sigma_{\lambda} LC(H_{\lambda}))_{\ast} \), where \(LC(H_{\lambda}) \) is the algebra of all compact operators on a Hilbert space \(H_{\lambda} \). It is easy to see that \(e \in LC(H_{\lambda_0}) \) for some \(\lambda_0 \). Let \(\{f_{\gamma}\} = \{f_{\beta}\} \cap LC(H_{\lambda_0}) \). Then we can write \(f_{\gamma} = x_{\gamma} \otimes x_{\gamma} \) with \(x_{\gamma} \in H_{\lambda_0} \) and \(\|x_{\gamma}\| = 1 \). Similarly \(e = y \otimes y \) with \(y \in H_{\lambda_0} \) and \(\|y\| = 1 \). Since \(\{f_{\gamma}\} \) is a maximal orthogonal family of hermitian minimal idempotents in \(LC(H_{\lambda_0}) \), it follows easily that \(\{x_{\gamma}\} \) is a complete orthonormal set in \(H_{\lambda_0} \). Put \(b = ae \). Then \(b \in LC(H_{\lambda_0}) \) and \(be = ae \). Hence

\[
\|ae\|^2 = \|eb^\ast be\| = \|(y \otimes y)b^\ast b(y \otimes y)\| = \|by\|^2.
\]

Similarly \(\|f_{\gamma}be\| = \|(by, x_{\gamma})\| \). Since \(f_{\beta}ae = 0 \) if \(f_{\beta} \not\in \{f_{\gamma}\} \), by Parseval's identity we have
\[\sum_{\beta} ||f_{\beta}ae||^2 = \sum_{\gamma} ||f_{\gamma}be||^2 = \sum_{\gamma} ||b(y, x_{\gamma})||^2 = ||by||^2 = ||ae||^2. \]

This completes the proof.

The following lemma is useful in this paper and it is similar to [10, p. 29, Lemma 1].

Lemma 2.2. Let \(a \in A \) and \(\{e_{\alpha}\}, \{f_{\beta}\} \) any two maximal orthogonal families of hermitian minimal idempotents in \(A \). Then

\[\sum_{\alpha} ||ae_{\alpha}||^2 = \sum_{\beta} ||af_{\beta}||^2 = \sum_{\beta} ||af_{\beta}||^2. \]

Proof. We note first that \(||f_{\beta}ae_{\alpha}|| = ||e_{\alpha}a^*f_{\beta}|| \). If \(\Sigma_{\alpha} ||ae_{\alpha}||^2 \) is summable, then by Lemma 2.1, we have

\[\Sigma_{\alpha} ||ae_{\alpha}||^2 = \Sigma_{\beta} ||af_{\beta}||^2 = \Sigma_{\beta} ||af_{\beta}||^2. \]

Hence, in particular, \(\Sigma_{\beta} ||af_{\beta}||^2 = \Sigma_{\beta} ||af_{\beta}||^2 \). The lemma now follows from (2.1).

Suppose \(b \) is a normal element in \(A \). Let \(B \) (resp. \(B' \)) be a maximal commutative \(* \)-subalgebra of \(A \) containing \(b \) and \(\{e_{\alpha}\} \) (resp. \(\{e_{\omega}\} \)) the maximal orthogonal family of hermitian minimal idempotents in \(B \) (resp. \(B' \)). Then \(be_{\alpha} = e_{\alpha}be_{\alpha} = k_{\alpha}e_{\alpha} \) for some constant \(k_{\alpha} \). Similarly \(be_{\omega} = k_{\omega}e_{\omega} \) for some constant \(k_{\omega} \). Let \(K \) (resp. \(K' \)) be the set of all nonzero \(k_{\alpha} \) (resp. \(k_{\omega} \)).

We note that \(k_{\alpha_1} \) may be equal to \(k_{\alpha_2} \) for some \(\alpha_1 \neq \alpha_2 \). However we consider them as different elements in \(K \).

Lemma 2.3. The set \(K \) is either finite or countable and \(K = K' \). The set of all distinct constants in \(K \) is precisely the set of all nonzero constants in the spectrum of \(b \).

Proof. Let \(B_0 \) be the intersection of all maximal commutative \(* \)-subalgebras of \(A \) containing \(b \). Let \(\{f_{\beta}\} \) be the maximal orthogonal family of hermitian minimal idempotents in \(B_0 \). Since \(B_0 \) is a dual \(B^* \)-algebra, \(b = \Sigma_{\beta} b f_{\beta} = \Sigma_{\beta} \lambda_{\beta} f_{\beta} \), where \(\lambda_{\beta} \) are constants. Therefore there exists only a countable number of \(f_{\beta} \) for which \(b f_{\beta} \neq 0 \). Also, for each nonzero \(\lambda_{\beta_0} \), the set \(\{\lambda_{\beta} : \lambda_{\beta} = \lambda_{\beta_0}\} \) is finite. It is now easy for us to write \(b = \Sigma_{n=1}^{\infty} \lambda_n f_n \), where \(\lambda_n \) are distinct nonzero constants and \(\{f_n\} \) is an orthogonal family of hermitian idempotents in \(B_0 \) such that \(\lambda_n f_n = b f_n \). Note that \(f_n \) is not necessarily minimal. Since \(B \) is dual and \(f_n \in B \), it is well known that

\[f_n = e_{\alpha_{n_1}} + \cdots + e_{\alpha_{n_p}}, \text{ where } e_{\alpha_{n_i}} \in \{e_{\alpha}\} (i = 1, 2, \cdots, p). \]
Considering the right ideal \(f_n A \) of \(A \), by \([1, \text{p. 497, Theorem 2.2}]\), the number \(n_p \) is independent of the choice of \(B \). Since \(bf_n = \lambda_n f_n \), we see easily that

\[
be_{\alpha n_i} = \lambda_n e_{\alpha n_i} \quad (i = 1, 2, \cdots, p).
\]

If \(f_m = e_{\alpha m_1} + \cdots + e_{\alpha m_q} \) \((m \neq n)\), then it follows from (2.2) that

\[
\{e_{\alpha m_1}, \cdots, e_{\alpha m_q}\} \cap \{e_{\alpha n_1}, \cdots, e_{\alpha n_p}\} = \emptyset,
\]

because \(\lambda_n \neq \lambda_m \). Also

\[
b = \sum_n \lambda_n f_n = \sum \lambda_n (e_{\alpha n_1} + \cdots + e_{\alpha n_p}).
\]

Let \(E \) be the set of all such \(e_{\alpha n_p} \). Then \(E \) is countable. For simplicity, we write \(E = \{e_1, e_2, \cdots\} \) and \(b = \sum_{n=1}^{\infty} k_n e_n \), where \(\sum k_n e_n = be_n \) and \(k_n \neq 0 \) (because \(\lambda_n \neq 0 \)). Let \(\{e_{\gamma}\} = \{e_{\alpha}\} - E \). We show that \(b e_{\gamma} = 0 \) for all \(\gamma \).

In fact, since \(b = \sum_{\alpha} b_{e_{\alpha}} = \sum_{\alpha} b_{e_{\alpha}} \), it follows that \(\sum_{\gamma} b e_{\gamma} = 0 \). Let \(F_{\alpha} \) be the multiplicative linear functional on \(B \) corresponding to the maximal modular ideal \(B(1 - e_{\alpha}) \) of \(B \). For any fixed \(\gamma_0 \), we have \(b e_{\gamma_0} = k_{\gamma_0} e_{\gamma_0} \), for some constant \(k_{\gamma_0} \). Then

\[
k_{\gamma_0} = F_{\gamma_0}(be_{\gamma_0}) = \sum_{\gamma} F_{\gamma_0}(be_{\gamma}) = F_{\gamma_0} \left(\sum_{\gamma} be_{\gamma} \right) = 0.
\]

Hence it follows that \(b e_{\gamma} = 0 \) for all \(\gamma \). Consequently \(K = \{k_n\} \). Similarly we can show that \(K' = \{k_n\} \). Therefore \(K = K' \). Now the last part of the lemma follows easily from \([7, \text{p. 111, Theorem (3.1.6)}]\). This completes the proof.

Let \(b, \{e_{\alpha}\} \) and \(\{e_n\} \) be as in the proof of Lemma 2.3. Then

\[
b = \sum_{\alpha} k_{\alpha} e_{\alpha} = \sum_{n} k_n e_n \quad \text{is called a spectral representation of} \ b. \ By \ Lemma 2.3, \ \{k_n\} \ is independent of \ \{e_n\}. \ Also \ if \ k_{\alpha} \neq k_n \ for \ all \ n, \ then \ k_{\alpha} = 0.
\]

Suppose \(a \) is a nonzero element in \(A \). Let \(a^*a = \sum_n r_n e_n \) be a spectral representation of \(a^*a \). We claim that

\[
a = \sum_n a e_n.
\]

In fact, since \(\sum_n ae_n \) is summable and \(a^*a = \sum_n a^*ae_n = \sum_n e_n a^*ae_n = \sum_n r_n e_n \), it follows that \((a - \sum_n ae_n)^*(a - \sum_n ae_n) = 0 \). Hence \(a = \sum_n ae_n \).

We note that \(ae_n \neq 0 \); for otherwise \(r_n e_n = a^*ae_n = 0 \).

Since \(a^*a \) is a positive element, \(r_n > 0 \) for all \(n \). Put \(k_n = \sqrt{r_n} > 0 \). We show that \(\sum_n k_n e_n \) is summable in \(A \). In fact, for any two positive integers \(m, n \) \((m < n)\), \(\| \sum_{i=m}^{n} k_i e_i \|^2 = \| \sum_{i=m}^{n} r_i e_i \| \). Since \(\sum_n r_n e_n \) is summable, so
THE \(p \)-CLASS IN A DUAL \(B^* \)-ALGEBRA

is \(\sum_n k_n e_n \). Put

\[(a) = \sum_n k_n e_n.\]

Then \((a)^* = (a) \) and \((a)^2 = a^* a \). Hence \((a) = (a^* a)^{\frac{1}{2}} \). For each \(x \) in \(A \),

\[
\left\| \sum_{i=m}^{n} k_i^{-1} a e_i x \right\|^2 = \left\| \left(\sum_{i=m}^{n} k_i^{-1} a e_i x \right)^* \left(\sum_{i=m}^{n} k_i^{-1} a e_i x \right) \right\|
\]

\[
= \left\| \sum_{i=m}^{n} x^* e_i x \right\|^2 = \left\| \sum_{i=m}^{n} e_i x \right\|^2 \leq \|x\|^2.
\]

Since \(\sum_n e_n x \) is summable in \(A \), so is \(\sum_n k_n^{-2} a e_n x \). Define a mapping \(W \) on \(A \) by

\[
Wx = \sum_n k_n^{-2} a e_n x \quad (x \in A).
\]

Then it follows from (2.3), (2.4) and (2.5) that \(W(a) = a \) and \(\|W\| = 1 \).

We note that \(a e_n a^* \neq 0 \); for otherwise \(r_n^2 e_n = a^* a e_n a = 0 \). Put \(f_n = k_n^{-2} a e_n a^* \). Since \((0) \neq f_n A \subset a e_n A \) and \(a e_n \neq 0 \), it follows from [7, p. 45, Lemma (2.1.8)] that \(f_n A = a e_n A \) is a minimal right ideal of \(A \). Hence we see that \(\{f_n\} \) is an orthogonal family of hermitian minimal idempotents in \(A \).

By (2.3), \(aa^* = \sum_n a e_n a^* = \sum_n k_n^2 f_n \) and so it is a spectral representation of \(aa^* \) by the proof of Lemma 2.3. For each \(x \) in \(A \), by a similar argument in (2.5), we have

\[
\left\| \sum_{i=m}^{n} k_i^{-1} e_n a^* x \right\|^2 = \left\| \sum_{i=m}^{n} f_i x \right\|^2 \leq \|x\|^2.
\]

Since \(\sum_n f_n x \) is summable, so is \(\sum_n k_n^{-1} e_n a^* x \). Therefore we can define a mapping \(W^* \) on \(A \) by

\[
W^* x = \sum_n k_n^{-1} e_n a^* x \quad (x \in A).
\]

It follows easily from (2.4) and (2.7) that \(W^* a = [a] \) and \(\|W^*\| = 1 \). Also both \(W \) and \(W^* \) are right centralizers on \(A \). We shall refer to the operator \(W \) as the partial isometry associated with \(a \).

We remark that similar concepts were introduced in [9].

3. The \(p \)-class in \(A \). As before, \(A \) will be a dual \(B^* \)-algebra with norm \(\|\cdot\| \). Suppose \(a \) is a nonzero element in \(A \). Let \(a^* a = \Sigma_n r e_n \) be a spectral representation of \(a^* a \) and \(k_n = \sqrt{r_n} \). Since \(a^* a \) is a positive element in \(A \), \(r_n > 0 \) and so \(k_n > 0 \). We define
(3.1) $$|a|_p = \left(\sum_n k_n^p \right)^{1/p} \quad (0 < p < \infty),$$

$$|a|_\infty = \max \{k_n: n = 1, 2, \cdots \}.$$

For $a = 0$, we define $|a|_p = 0 \quad (0 < p \leq \infty)$.

Remark. By Lemma 2.3, $|a|_p$ is well defined.

Definition. For $0 < p < \infty$, let $A_p = \{a \in A: |a|_p < \infty\}$.

Remark. For $0 < p < \infty$, $|a|_p > 0$ and $|a|_p = 0$ if and only if $a = 0$. Also $|ka|_p = |k| |a|_p$ for any constant k.

We now have some elementary properties of $|a|_p$.

Lemma 3.1. Let a be an element in A and $0 < p \leq \infty$. Then

(i) $||a|| = |a|_\infty \leq |a|_p$. Thus $A_\infty = A$.

(ii) $|a|_p = ||a||_p$. Hence $a \in A_p$ if and only if $[a] \in A_p$.

(iii) If $p \leq q$, then $|a|_p \geq |a|_q$ and so $A_p \subset A_q$.

(iv) If e is a hermitian minimal idempotent in A, then $|e|_p = 1$ and so $e \in A_p$.

(v) $|a|_p = |a^*|_p$. Hence $a \in A_p$ if and only if $a^* \in A_p$.

Proof. Let $a^*a = \sum_n r_n e_n$ be a spectral representation of a^*a and $[a] = \sum_n k_n e_n$ with $k_n = \sqrt{r_n}$.

(i) This follows from $||a||^2 = ||a^*a||$ and [7, p. 112, Corollary (3.1.7)].

(ii) This follows from $[a] = [[a]] = \sum_n k_ne_n$.

(iii) and (iv). This is clear.

(v) We can assume that $a \neq 0$. Put $f_n = k_n^{-2} a^*e_n a^*$. Then $a a^* = \sum_n k_n f_n$ is a spectral representation of $a a^*$ (see §2). Therefore it follows that $|a^*|_p = |a|_p$. This completes the proof of the lemma.

Let a be a positive element in A and B_0 the intersection of all maximal commutative *-subalgebras of A containing a. If $\{f_\beta\}$ is the maximal orthogonal family of hermitian minimal idempotents in B_0, then $a = \sum_\beta f_\beta = \sum_\beta \lambda_\beta f_\beta$, where λ_β are nonnegative constants.

Definition. For $0 < p < \infty$, we define $a^p = \sum_\beta \lambda_\beta^p f_\beta$.

Remark. Let $a = \sum_\alpha k_\alpha e_\alpha = \sum_n k_ne_n$ be a spectral representation of a. If a^p exists, then by the proof of Lemma 2.3 $a^p = \sum_\alpha k_\alpha^p e_\alpha = \sum_n k_n^p e_n$ is a spectral representation of a^p.

Lemma 3.2. Let a be a positive element in A and $0 < p, q < \infty$. If a^q exists, then $|a^q|_{p/q} = |a|_p^q$.

Proof. This is clear.
Lemma 3.3. Let $a \in A$ and $0 < p < \infty$. Then the following statements are equivalent:

(i) $a \in A_p$.
(ii) $[a]^p \in A_1$.
(iii) $[a]^{p/2} \in A_2$.

If any of these conditions holds, then $|a|^p = \sum f_{\beta} |a|^{p/2} f_{\beta}$, where $\{f_{\beta}\}$ is a maximal orthogonal family of hermitian minimal idempotents in A.

Proof. Let $[a] = \sum k_{\alpha} e_{\alpha} = \sum k_{n} e_{n}$ be a spectral representation of $[a]$.

(i) \iff (ii) This follows from the equality $|a|^p = \sum k_{n}^p = \|a\|^p_1$.
(ii) \iff (iii) This follows from the equality $\|a\|^p_1 = \sum k_{n}^p = \|a|^{p/2}\|_2^2$.

If any of these conditions holds, then by Lemma 2.2, we have

$$|a|^p = \sum k_{\alpha}^p = \sum \|a|^{p/2} e_{\alpha}\|^2$$

$$= \sum \|a|^{p/2} f_{\beta}\|^2 = \sum \|f_{\beta} [a]|^{p/2} f_{\beta}\|.$$

This completes the proof.

Lemma 3.4. Let a be a positive element in A and f a hermitian minimal idempotent in A. Then

(i) $\|fa^p f\| > \|fa^p f\|^p$ ($1 < p < \infty$).
(ii) $\|fa^p f\| < \|fa^p f\|^p$ ($0 < p < 1$).

Proof. Let $a = \sum k_{\alpha} e_{\alpha}$ be a spectral representation of a.

(i) Clearly we can assume that $1 < p < \infty$. Then by Hölder's inequality and Lemma 2.1, we have

$$\|fa^p f\| = \sum |e_{\alpha} a^{p/2} f|^2 = \sum k_{\alpha} \|e_{\alpha} f\|^2$$

$$\leq \left(\sum k_{\alpha}^p \|e_{\alpha} f\|^2 \right)^{1/p} \left(\sum \|e_{\alpha} f\|^2 \right)^{(p-1)/p}$$

$$= \left(\sum \|e_{\alpha} a^{p/2} f\|^2 \right)^{1/p} (\|f\|^2)^{(p-1)/p} = \|fa^p f\|^{1/p}.$$

(ii) Replacing a by a^p and p by $1/p$ in (i), we get (ii).

Lemma 3.5. Let $a \in A_p$ and $\{f_{\beta}\}$ be a maximal orthogonal family of hermitian minimal idempotents in A. Then

(i) $|a|^p \leq \sum f_{\beta} |a| f_{\beta}\|^p$ ($1 < p < 2$).
(ii) $|a|^p > \sum f_{\beta} |a| f_{\beta}\|^p$ ($2 < p < \infty$).

If $[a] = \sum k_{n} e_{n}$ is a spectral representation of $[a]$, then $|a|^p = \sum k_{n} \|ae_{n}\|^p$ ($0 < p < \infty$).
PROOF. (i) If $1 < p < 2$, then by Lemma 3.4(ii), we have $\|f_\beta [a]^p f_\beta\| \leq \|f_\beta[a]^2 f_\beta\|^p/2 = \|af_\beta\|^p$. Therefore (i) follows now from Lemma 3.3.

(ii) This can be proved similarly.

If $[a] = \Sigma_n k_n e_n$, then $\|ae_n\| = |e_n a^* a e_n|^{1/2} = k_n$. Therefore $|a|^p = \Sigma_n |ae_n|^p$ $(0 < p < \infty)$. This completes the proof.

Lemma 3.6. Suppose $a, b \in A$ and $1 \leq p \leq \infty$, then the following statements hold:

(i) If $a \in A_p$ and S is a right centralizer on A, then $Sa \in A_p$ and $|Sa|^p \leq \|S\| |a|^p$.

(ii) If $a \in A_p$ and $b \in A$, then $|ab|^p \leq \|b\| |a|^p$ and $|ba|^p \leq \|b\| |a|^p$.

Hence ab and ba are in A_p.

(iii) If a, b are in A_p, then $|ab|^p < |a|^p |b|^p$.

Proof. Clearly we can assume that $1 \leq p < \infty$.

(i) Suppose $1 < p < 2$. Let $[a] = \Sigma k e_a$ be a spectral representation of $[a]$. Then by Lemma 3.5, we have

$$|Sa|^p \leq \sum_\alpha \|(Sa) e_\alpha\|^p \leq \|S\|^p \sum_\alpha |ae_\alpha|^p = \|S\|^p |a|^p.$$

If $2 < p < \infty$, let $[Sa] = \Sigma k e_\alpha$ be a spectral representation of $[SA]$. Then by a similar argument, we have $|Sa|^p \leq \|S\| |a|^p$. This proves (i).

(ii) This follows easily from (i) and Lemma 3.1(v).

(iii) This follows from (ii) and Lemma 3.1(i).

Lemma 3.7. Let $a \in A_p$ and $\{f_\beta\}$ a maximal orthogonal family of hermitian minimal idempotents in A. Then

(3.2) $\sum_\beta \|f_\beta a f_\beta\|^p \leq |a|^p$ $(1 \leq p < \infty)$.

Proof. Let W be the partial isometry associated with a and $b = W[a]^{1/2}$. Then $a = W[a] = b[a]^{1/2}$. It follows from Cauchy’s inequality that

(3.3) $\sum_\beta \|f_\beta a f_\beta\|^p \leq \left(\sum_\beta \|f_\beta b\|^2\right)^{1/2} \left(\sum_\beta \|a\|^{1/2} |f_\beta|^2\right)^{1/2}.$

By Lemma 3.3 and Lemma 3.4, we have

(3.4) $\sum_\beta \|a\|^{1/2} |f_\beta|^2 = \sum_\beta \|f_\beta a f_\beta\| \leq \sum_\beta \|f_\beta a f_\beta\|^p = |a|^p.$

By Lemma 3.2, Lemma 3.3 and Lemma 3.4, we have

(3.5) $\sum_\beta \|f_\beta b\|^2 \leq \sum_\beta \|f_\beta (b^* b) f_\beta\| = |b^* b|^2 = |b|^2,$

$$\leq \|a\|^{2p} = |a|^p.$$
Substituting (3.4) and (3.5) into (3.3), we get (3.2). This completes the proof.

In order that \(|\cdot|_p \) be a norm on \(A_p \) \((1 \leq p \leq \infty) \), it is sufficient now to show the triangle inequality.

Lemma 3.8. Let \(a, b \in A_p \), then \(|a + b|_p \leq |a|_p + |b|_p \) \((1 \leq p \leq \infty) \). Hence \(a + b \in A_p \).

Proof. We can assume \(1 \leq p < \infty \). Write \([a + b] = \sum \alpha k_\alpha e_\alpha \) and \([a + b] = W^*(a + b) \) (see (2.8)). Then by Lemma 3.5, Lemma 3.7 and Minkowski's inequality, we have

\[
|a + b|^p = \left(\sum |e_\alpha W^*a e_\alpha|^p \right)^{1/p} + \left(\sum |e_\alpha W^*b e_\alpha|^p \right)^{1/p} < |W^*a|^p + |W^*b|^p < |a|^p + |b|^p.
\]

This completes the proof.

Now we have the main result of this section.

Theorem 3.9. For \(1 \leq p \leq \infty \), \(A_p \) is a dual \(A^* \)-algebra which is a dense two-sided ideal of \(A \).

Proof. By a similar argument in the proof of [4, p. 265, Corollary 3.2], we can show that \(A_p \) is complete. (We use maximal orthogonal families of hermitian minimal idempotents instead of orthonormal bases.) Hence \(A_p \) is an \(A^* \)-algebra which is a two-sided ideal of \(A \). It follows from Lemma 3.1(iv) that \(A_p \) contains the socle \(S \) of \(A \). Since \(S \) is dense in \(A \), so is \(A_p \). We claim that, for each \(a \) in \(A_p \), \(a \) belongs to the closure of \(aA_p \) in \(A_p \). In fact, let \([a] = \sum_{i=1}^\infty k_i e_i \) be a spectral representation of \([a] \) and \(W \) the partial isometry associated with \(a \). Put \(f_n = \sum_{i=1}^n e_i \) \((n = 1, 2, \ldots) \). Then

\[
|a - af_n|^p \leq ||[a] - [a]f_n||_p = \left(\sum_{i=n+1}^\infty k_i e_i \right)^{1/p} = \left(\sum_{i=n+1}^\infty k_i^p \right)^{1/p}.
\]

Since \(a \in A_p \), it follows that \(|a - af_n|^p \to 0 \) as \(n \to \infty \). Hence by [5, p. 29, Lemma 8 (3)], \(A_p \) is a dual algebra. This completes the proof.

We shall need the following result.

Corollary 3.10. Let \(\{e_\gamma\} \) be any orthogonal family of hermitian minimal idempotents of \(A \) and \(x \in A_p \) \((1 \leq p \leq \infty) \), then \(\Sigma e_\gamma x \) is summable in \(||\cdot||_p \) and especially when \(\{e_\gamma\} \) is a maximal family \(x = \Sigma e_\gamma x \) in \(A_p \).

Proof. This follows from Theorem 3.9 and Theorem 5.2 in [12].

Finally we remark that many statements and proofs in this section are similar to those given in [4] and [11].
4. The algebras A_1 and A_2. We have a characterization of a proper H^*-algebra.

Theorem 4.1. The algebra A_2 is a proper H^*-algebra. Conversely, every proper H^*-algebra is of the form A_2 for some dual B^*-algebra A.

Proof. Let $a, b \in A_2$ and $\{f_\beta\}$ a maximal orthogonal family of hermitian minimal idempotents in A. Then $f_\beta b^*a f_\beta = \lambda_\beta f_\beta$ for some constant λ_β. We claim that $\sum_\beta \lambda_\beta$ is absolutely summable and independent of the choice of $\{f_\beta\}$. In fact, let $x, y \in Af_\beta$. Then $y^*x = \langle x, y \rangle_\beta f_\beta$ for some constant $\langle x, y \rangle_\beta$. It follows from [7, p. 261, Theorem (4.10.3)] and [7, p. 263, Theorem (4.10.6)] that $\langle x, y \rangle_\beta$ defines a complete inner product on Af_β such that $\langle x, x \rangle_\beta = ||x||^2$. Now by Lemma 2.2 and the proof of [10, p. 30, Lemma 4], we can show that $\sum_\beta \lambda_\beta$ is absolutely summable and independent of $\{f_\beta\}$. Define

$$ (a, b) = \sum_\beta \lambda_\beta \quad (a, b \in A_2). \tag{4.1} $$

Then by the proof of [10, p. 31, Lemma 5], $(,)$ is an inner product on A_2 such that $(xa, b) = (a, x^*b)$ and $(ax, b) = (a, bx^*)$ for all x in A. Also $|a|^2 = (a, a)$. Therefore A_2 is a proper H^*-algebra.

Conversely, let B be a proper H^*-algebra. Then B is a dense two-sided ideal of some dual B^*-algebra A. We can show that $B = A_2$ and this completes the proof.

Lemma 4.2. Let $1/p + 1/q = 1$, where $1 < p, q < \infty$. If $a \in A_p$ and $b \in A_q$, then $ab \in A_1$ and $|ab|_1 \leq |a|_p |b|_q$.

Proof. Suppose first that $2 < p < \infty$, $1 < q < 2$. Let $[b] = \sum_\alpha k_\alpha e_\alpha$ be a spectral representation of $[b]$. Also write $[ab] = W^*ab$. Then by Lemma 3.3, Lemma 3.5 and Hölder's inequality, we have

$$ |ab|_1 = \sum_\alpha ||e_\alpha [ab] e_\alpha|| = \sum_\alpha ||e_\alpha W^*a e_\alpha|| \leq |W^*a|_p |b|_q \leq |a|_p |b|_q. \tag{4.2} $$

By a similar argument, we can show that (4.2) holds for $1 < p \leq 2$, $2 \leq q < \infty$.

We now identify A_1.

Theorem 4.3. $A_1 = \{xy: x, y \in A_2\}$.

Proof. If $a \in A_1$, then by Lemma 3.3, $[a]^\frac{1}{2} \in A_2$. Let W be the
partial isometry associated with \(a \). Then \(a = W[a] = (W[a]^{1/2})([a]^{1/2}) \in \{ xy: x, y \in A_2 \} \). The converse follows from Lemma 4.2 and this completes the proof.

Let \(a \in A_1 \). Then by Theorem 4.3, \(a = c^*b \) for some \(b, c \) in \(A_2 \).

Define

\[
\text{tr } a = (b, c) \quad (a \in A_1),
\]

where \((b, c)\) is given by (4.1).

Lemma 4.4. Let \(a \in A_1 \), \(\{f_\beta\} \) a maximal orthogonal family of hermitian minimal idempotents in \(A \) and \(\lambda_\beta f_\beta = f_\beta a f_\beta \). Then \(\text{tr } a \) is well defined, \(\text{tr } a = \Sigma_\beta \lambda_\beta = \Sigma_\beta (a f_\beta, f_\beta) \) and \(|\text{tr } a| \leq |a|_1 \).

Proof. By the proof of Theorem 4.1, \(\Sigma_\beta \lambda_\beta \) is absolutely summable and independent of \(\{f_\beta\} \). It is clear that \(\text{tr } a = \Sigma_\beta \lambda_\beta = \Sigma_\beta (a f_\beta, f_\beta) \). Therefore \(\text{tr } a \) is well defined. By Lemma 3.7, \(|\text{tr } a| \leq \Sigma_\beta ||f_\beta a f_\beta|| \leq \langle a \rangle \).

5. The uniform convexity of \(A_p \) (\(1 < p < \infty \)). For each \(a \) in \(A \), we define a linear operator \(L_a \) on \(A_2 \) by

\[
L_a(x) = ax \quad (x \in A_2).
\]

Since \(||ax||_2 \leq ||a|| |x|_2 \), it follows that \(L_a \) is bounded on \(A_2 \). Let \((,) \) be the given inner product on \(A_2 \).

Lemma 5.1. Let \(a \) be a positive element in \(A \). Then \(L_a \) is positive and \(L_a^r = (L_a)^r \) (\(0 < r < \infty \)).

Proof. This is clear.

We now establish [4, p. 260, Lemma 2.6] for \(A_p \).

Lemma 5.2. Let \(a \) and \(b \) be two positive elements in \(A \) and \(0 < r < \infty \). If \((a + b)^r, a^r \) and \(b^r \) are in \(A_1 \), then

(i) \(\text{tr } (a + b)^r \leq \text{tr } a^r + \text{tr } b^r \) (\(0 < r \leq 1 \)).

(ii) \(\text{tr } (a + b)^r \geq \text{tr } a^r + \text{tr } b^r \) (\(1 \leq r < \infty \)).

Proof. We assume first that \(0 < r \leq 1 \). Let \(S = L_a, T = L_b \) and \(U = L_{a+b} \). Then by the proof of [4, p. 260, Lemma 2.6], there exist operators \(C \) and \(D \) on \(A_2 \) such that

\[
||C|| \leq 1, \quad ||D|| \leq 1, \quad CU^{1/2} = S^{1/2}, \quad DU^{1/2} = T^{1/2},
\]

\[
U^r = U^{r/2}C^*C^{1/2}U^{1/2} + U^{r/2}D^*D^{1/2}U^{1/2}.
\]

Let \(\{f_\beta\} \) be a maximal orthogonal family of hermitian minimal idempotents in \(A \). Then by Lemma 5.1, we have
\[
\text{tr} (a + b)^r = \sum_{\beta} ((a + b)^r f_{\beta}, f_{\beta}) = \sum_{\beta} (U^r f_{\beta}, f_{\beta})
\]
(5.2)
\[
= \sum_{\beta} (CU^{r/2} f_{\beta}, CU^{r/2} f_{\beta}) + \sum_{\beta} (DU^{r/2} f_{\beta}, DU^{r/2} f_{\beta}).
\]

Since \(C(a + b)^{r/2} \in A_2\) and \(CU^{r/2} f_{\beta} = C(a + b)^{r/2} f_{\beta}\), it follows from (5.2) that
\[
\text{tr} (a + b)^r = |C(a + b)^{r/2}|_2^2 + |D(a + b)^{r/2}|_2^2
\]
(5.3)
\[
= |(C(a + b)^{r/2})^*|_2^2 + |(D(a + b)^{r/2})^*|_2^2.
\]

Let \(a = \Sigma_{\alpha} k_{\alpha} e_{\alpha}\) be a spectral representation of \(a\). Since \((C(a + b)^{r/2})^* e_{\alpha} = (CU^{r/2})^* e_{\alpha} = (a + b)^{r/2} e_{\alpha}\), it follows from [4, p. 252, Lemma 2.1] that
\[
((C(a + b)^{r/2})^* e_{\alpha}, (C(a + b)^{r/2})^* e_{\alpha}) = ((a + b)^{r/2} e_{\alpha}, C^* e_{\alpha})
\]
\[
\leq (a + b)^{r/2} e_{\alpha}, C^* e_{\alpha})^* = (a e_{\alpha}, e_{\alpha})^r = k_{\alpha}^r = (a e_{\alpha}, e_{\alpha}).
\]

Therefore \(|(C(a + b)^{r/2})^*|_2^2 \leq \text{tr} a^r\). Similarly \(|(D(a + b)^{r/2})^*|_2^2 \leq \text{tr} b^r\). Hence by (5.3), we have \(\text{tr} (a + b)^r \leq \text{tr} a^r + \text{tr} b^r\). The case \(1 \leq r < \infty\) can be proved in a similar way and the proof is complete.

By using maximal orthogonal families of hermitian minimal idempotents and a similar argument in the proof of [4, p. 259, Lemma 2.5], we have:

Lemma 5.3. Let \(a\) be a positive element in \(A\) and \(b\) a hermitian element in \(A\) such that \(a + b\) and \(a - b\) are positive. Suppose \((a + b)^r\), \((a - b)^r\) and \(a^*\) are in \(A_1\). Then

(i) \(\text{tr} (a + b)^r + \text{tr} (a - b)^r \leq \text{tr} a^r (0 < r \leq 1)\).

(ii) \(\text{tr} (a + b)^r + \text{tr} (a - b)^r \geq \text{tr} a^r (1 \leq r < \infty)\).

Now we have the following result.

Theorem 5.4. Let \(a\) and \(b\) be two elements in \(A_p\) and \(1/p + 1/q = 1\). Then

(i) \(2^{p-1}(|a|_p^p + |b|_p^p) \leq |a + b|_p^p + |a - b|_p^p \leq 2(|a|_p^p + |b|_p^p) (0 < p \leq 2)\)

(ii) \(|a + b|_p^q + |a - b|_p^q \leq 2(|a|_p^p + |b|_p^p)^{q/p} (1 < p \leq 2)\)

(iii) \(2(|a|_p^p + |b|_p^p) \leq |a + b|_p^p + |a - b|_p^p \leq 2^{p-1}(|a|_p^p + |b|_p^p) (2 \leq p < \infty)\)

(iv) \(2(|a|_p^p + |b|_p^p)^{q/p} \leq |a + b|_p^q + |a - b|_p^q (2 \leq p < \infty)\).

Proof. This can be proved by using Lemma 5.2, Lemma 5.3 and the proof of [4, p. 261, Theorem 2.7]. We omit the details.
As observed in [4], we have:

Corollary 5.5. For $1 < p < \infty$, A_p is uniformly convex and reflexive.

6. The conjugate space of A_p. In this section, we always assume that $1 \leq p < \infty$ and $1/p + 1/q = 1$. Let A_p^* be the conjugate space of A_p. We shall show that $A_p = A_q^*$ in a natural way.

For each a in A_p ($1 \leq p < \infty$), we define

$$F_a(x) = \text{tr} ax \quad (x \in A_q).$$

Theorem 6.1. For each a in A_p ($1 < p < \infty$), $F_a \in A_q^*$ and $\|F_a\| = |a|_p$.

Proof. By Lemma 4.2, F_a is well defined. It is clear that $F_a \in A_q^*$ and $\|F_a\| \leq |a|_p$. By a similar argument in the proof of [11, p. 786, Proposition 3.26], we can show that $\|F_a\| \geq |a|_p$. This completes the proof.

We now establish a converse of Theorem 6.1.

Theorem 6.2. For $1 < p < \infty$, every continuous linear functional F on A_q is of the form F_a for some a in A_p, where F_a is defined in (6.1).

Proof. We assume first that $p = 1$ and $F \in A_\infty^* = A^*$. Then it is clear that $F \in A_2^*$. Since A_2 is a Hilbert space, by the Riesz representation theorem, there exists some a in A_2 such that $F(x) = (x, a^*) = \text{tr} ax$ for all x in A_2. By the proof of Theorem 6.1, we can show that $a \in A_1$ and so $F = F_a$.

Now we consider the case $1 < p < \infty$ and assume $F \in A_q^*$. Then $F \in A_1^*$. Hence by the proof of [8, p. 103, Theorem 2], there exists a right centralizer S on A_2 such that

$$F(y) = \text{tr} Sy \quad (y \in A_1).$$

Let $\{e_\alpha\}$ be a maximal orthogonal family of hermitian minimal idempotents in A and $\{E_\gamma\}$ the direct set of all finite sums $e_{\alpha_1} + e_{\alpha_2} + \cdots + e_{\alpha_n}$. Define F_γ on A_q by

$$F_\gamma(x) = F(E_\gamma x) \quad (x \in A_q).$$

Since $S(E_\gamma x) = (SE_\gamma)(E_\gamma x) = ((SE_\gamma)E_\gamma)x = (SE_\gamma)x$ and $E_\gamma x \in A_1$, by (6.2) and (6.3) we have

$$F_\gamma(x) = \text{tr} S(E_\gamma x) = \text{tr} (SE_\gamma)x \quad (x \in A_q).$$

Since $SE_\gamma = (SE_\gamma)E_\gamma \in A_p$, by (6.4) and Theorem 6.1, $|SE_\gamma|_p = \|F_\gamma\| \leq \|F\|$. Therefore $\{SE_\gamma\}$ is a bounded set in A_p. Since A_p is reflexive (Corollary 5.5), we can assume that $SE_\gamma \to a$ weakly for some a in A_p. Hence $ae_\alpha = Se_\alpha$ for all α. Therefore by (6.2), $F(e_\alpha x) = \text{tr} ae_\alpha x$. For each x in A_q, by
Corollary 3.10, $x = \sum_{\alpha} e_{\alpha} x$ in $| \cdot |_q$. Hence it follows that $F(x) = \text{tr} \, x \, (x \in A_q)$. This completes the proof.

Remark. Some arguments in the above proof are similar to those in the proof of [3, p. 130, Theorem III. 12.2].

REFERENCES

DEPARTMENT OF MATHEMATICS, SETON HALL UNIVERSITY, SOUTH ORANGE, NEW JERSEY 07079