The $p$-class in a dual $B^{\ast }$-algebra
HTML articles powered by AMS MathViewer
- by Pak Ken Wong
- Trans. Amer. Math. Soc. 200 (1974), 355-368
- DOI: https://doi.org/10.1090/S0002-9947-1974-0358371-X
- PDF | Request permission
Abstract:
In this paper, we introduce and study the class ${A_p}(0 < p \leqslant \infty )$ in a dual ${B^ \ast }$-algebra $A$. We show that, for $1 \leqslant p \leqslant \infty ,{A_p}$ is a dual ${A^ \ast }$-algebra which is a dense two-sided ideal of $A$. If $1 < p < \infty$, we obtain that ${A_p}$ is uniformly convex and hence reflexive. We also identify the conjugate space of ${A_p}(1 \leqslant p < \infty )$. This is a generalization of the class ${C_p}$ of compact operators on a Hilbert space.References
- Bruce Alan Barnes, A generalized Fredholm theory for certain maps in the regular representations of an algebra, Canadian J. Math. 20 (1968), 495–504. MR 232208, DOI 10.4153/CJM-1968-048-2
- Nelson Dunford and Jacob T. Schwartz, Linear operators. Part II: Spectral theory. Self adjoint operators in Hilbert space, Interscience Publishers John Wiley & Sons, New York-London, 1963. With the assistance of William G. Bade and Robert G. Bartle. MR 0188745
- I. C. Gohberg and M. G. Kreĭn, Introduction to the theory of linear nonselfadjoint operators, Translations of Mathematical Monographs, Vol. 18, American Mathematical Society, Providence, R.I., 1969. Translated from the Russian by A. Feinstein. MR 0246142
- Charles A. McCarthy, $c_{p}$, Israel J. Math. 5 (1967), 249–271. MR 225140, DOI 10.1007/BF02771613
- Tôzirô Ogasawara and Kyôichi Yoshinaga, Weakly completely continuous Banach $^*$-algebras, J. Sci. Hiroshima Univ. Ser. A 18 (1954), 15–36. MR 70068
- B. J. Pettis, A proof that every uniformly convex space is reflexive, Duke Math. J. 5 (1939), no. 2, 249–253. MR 1546121, DOI 10.1215/S0012-7094-39-00522-3
- Charles E. Rickart, General theory of Banach algebras, The University Series in Higher Mathematics, D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto-London-New York, 1960. MR 0115101
- Parfeny P. Saworotnow, Trace-class and centralizers of an $H^{\ast }$-algebra, Proc. Amer. Math. Soc. 26 (1970), 101–104. MR 267403, DOI 10.1090/S0002-9939-1970-0267403-0
- Parfeny P. Saworotnow and John C. Friedell, Trace-class for an arbitrary $H^{\ast }$-algebra, Proc. Amer. Math. Soc. 26 (1970), 95–100. MR 267402, DOI 10.1090/S0002-9939-1970-0267402-9
- Robert Schatten, Norm ideals of completely continuous operators, Ergebnisse der Mathematik und ihrer Grenzgebiete, (N.F.), Heft 27, Springer-Verlag, Berlin-Göttingen-Heidelberg, 1960. MR 0119112
- James F. Smith, The $p$-classes of an $H^{\ast }$-algebra, Pacific J. Math. 42 (1972), 777–793. MR 322517
- Pak Ken Wong, On the Arens products and certain Banach algebras, Trans. Amer. Math. Soc. 180 (1973), 437–448. MR 318885, DOI 10.1090/S0002-9947-1973-0318885-4
Bibliographic Information
- © Copyright 1974 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 200 (1974), 355-368
- MSC: Primary 46L05; Secondary 46K15
- DOI: https://doi.org/10.1090/S0002-9947-1974-0358371-X
- MathSciNet review: 0358371