Semigroups of scalar type operators on Banach spaces
HTML articles powered by AMS MathViewer
- by Ahméd Ramzy Sourour
- Trans. Amer. Math. Soc. 200 (1974), 207-232
- DOI: https://doi.org/10.1090/S0002-9947-1974-0365228-7
- PDF | Request permission
Abstract:
The main result is that if $\{ T(t):t \geqslant 0\}$ is a strongly continuous semigroup of scalar type operators on a weakly complete Banach space $X$ and if the resolutions of the identity for $T(t)$ are uniformly bounded in norm, then the infinitesimal generator is scalar type. Moreover, there exists a countably additive spectral measure $K( \cdot )$ such that $T(t) = \smallint \exp (\lambda t)dK(\lambda )$, for $t \geqslant 0$. This is a direct generalization of the well-known theorem of Sz.-Nagy about semigroups of normal operators on a Hilbert space. Similar spectral representations are given for representations of locally compact abelian groups and for semigroups of unbounded operators. Connections with the theory of hermitian and normal operators on Banach spaces are established. It is further shown that $R$ is the infinitesimal generator of a semigroup of hermitian operators on a Banach space if and only if iR is the generator of a group of isometries.References
- Sterling K. Berberian, Notes on spectral theory, Van Nostrand Mathematical Studies, No. 5, D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto, Ont.-London, 1966. MR 0190760
- A. V. Balakrishnan, An operational calculus for infinitesimal generators of semigroups, Trans. Amer. Math. Soc. 91 (1959), 330–353. MR 107179, DOI 10.1090/S0002-9947-1959-0107179-0
- Earl Berkson, A characterization of scalar type operators on reflexive Banach spaces, Pacific J. Math. 13 (1963), 365–373. MR 155192
- Earl Berkson, Semi-groups of scalar type operators and a theorem of Stone, Illinois J. Math. 10 (1966), 345–352. MR 192358
- Earl Berkson, Action of $W^{\ast }$-algebras in Banach spaces, Math. Ann. 189 (1970), 261–271. MR 278081, DOI 10.1007/BF01359706
- F. F. Bonsall and J. Duncan, Numerical ranges of operators on normed spaces and of elements of normed algebras, London Mathematical Society Lecture Note Series, vol. 2, Cambridge University Press, London-New York, 1971. MR 0288583
- A. Devinatz, A note on semi-groups of unbounded self-adjoint operators, Proc. Amer. Math. Soc. 5 (1954), 101–102. MR 60153, DOI 10.1090/S0002-9939-1954-0060153-6
- Nelson Dunford and Jacob T. Schwartz, Linear operators. Part II: Spectral theory. Self adjoint operators in Hilbert space, Interscience Publishers John Wiley & Sons, New York-London, 1963. With the assistance of William G. Bade and Robert G. Bartle. MR 0188745
- Uri Fixman, Problems in spectral operators, Pacific J. Math. 9 (1959), 1029–1051. MR 108727
- S. R. Foguel, The relations between a spectral operator and its scalar part, Pacific J. Math. 8 (1958), 51–65. MR 96976
- Ciprian Foiaş, On strongly continuous semigroups of spectral operators in Hilbert space, Acta Sci. Math. (Szeged) 19 (1958), 188–191. MR 124747
- Einar Hille and Ralph S. Phillips, Functional analysis and semi-groups, American Mathematical Society Colloquium Publications, Vol. 31, American Mathematical Society, Providence, R.I., 1957. rev. ed. MR 0089373
- Lynn H. Loomis, An introduction to abstract harmonic analysis, D. Van Nostrand Co., Inc., Toronto-New York-London, 1953. MR 0054173
- G. Lumer, Semi-inner-product spaces, Trans. Amer. Math. Soc. 100 (1961), 29–43. MR 133024, DOI 10.1090/S0002-9947-1961-0133024-2
- G. Lumer, Spectral operators, hermitian operators, and bounded groups, Acta Sci. Math. (Szeged) 25 (1964), 75–85. MR 169074
- C. A. McCarthy, Commuting Boolean algebras of projections, Pacific J. Math. 11 (1961), 295–307. MR 125448
- C. A. McCarthy, Commuting Boolean algebras of projections. II. Boundedness in $Lp$, Proc. Amer. Math. Soc. 15 (1964), 781–787. MR 173947, DOI 10.1090/S0002-9939-1964-0173947-X
- Theodore W. Palmer, Unbounded normal operators on Banach spaces, Trans. Amer. Math. Soc. 133 (1968), 385–414. MR 231213, DOI 10.1090/S0002-9947-1968-0231213-6
- Béla Sz.-Nagy, Spektraldarstellung linearer Transformationen des Hilbertschen Raumes, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 39, Springer-Verlag, Berlin-New York, 1967 (German). Berichtigter Nachdruck. MR 0213890
- Ivan Vidav, Eine metrische Kennzeichnung der selbstadjungierten Operatoren, Math. Z. 66 (1956), 121–128 (German). MR 84733, DOI 10.1007/BF01186601 K Yosida, Functional analysis, Die Grundlehren der math. Wissenschaften, Band 123, Springer-Verlag, Berlin, 1965. MR 31 #5054.
Bibliographic Information
- © Copyright 1974 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 200 (1974), 207-232
- MSC: Primary 47D05
- DOI: https://doi.org/10.1090/S0002-9947-1974-0365228-7
- MathSciNet review: 0365228