The space of conjugacy classes of a topological group
HTML articles powered by AMS MathViewer
- by Dennis Daluge
- Trans. Amer. Math. Soc. 200 (1974), 345-353
- DOI: https://doi.org/10.1090/S0002-9947-1974-0368057-3
- PDF | Request permission
Abstract:
The space ${G^\# }$ of conjugacy classes of a topological group $G$ is the orbit space of the action of $G$ on itself by inner automorphisms. For a class of connected and locally connected groups which includes all analytic $[Z]$-groups, the universal covering space of ${G^\# }$ may be obtained as the space of conjugacy classes of a group which is locally isomorphic with $G$, and the Poincaré group of ${G^\# }$ is found to be isomorphic with that of $G/G’$, the commutator quotient group. In particular, it is shown that the space ${G^\# }$ of a compact analytic group $G$ is simply connected if and only if $G$ is semisimple. The proof of this fact has not appeared in the literature, even though more specialized methods are available for this case.References
- J. Frank Adams, Lectures on Lie groups, W. A. Benjamin, Inc., New York-Amsterdam, 1969. MR 0252560
- Élie Cartan, La géométrie des groupes simples, Ann. Mat. Pura Appl. 4 (1927), no. 1, 209–256 (French). MR 1553103, DOI 10.1007/BF02409989
- Claude Chevalley, Theory of Lie groups. I, Princeton University Press, Princeton, N. J., 1946 1957. MR 0082628
- Jacques Dixmier, Les $C^{\ast }$-algèbres et leurs représentations, Cahiers Scientifiques, Fasc. XXIX, Gauthier-Villars Éditeur, Paris, 1969 (French). Deuxième édition. MR 0246136
- James Dugundji, Topology, Allyn and Bacon, Inc., Boston, Mass., 1966. MR 0193606
- Morikuni Gotô, A theorem on compact semi-simple groups, J. Math. Soc. Japan 1 (1949), 270–272. MR 33829, DOI 10.2969/jmsj/00130270
- Siegfried Grosser and Martin Moskowitz, Representation theory of central topological groups, Trans. Amer. Math. Soc. 129 (1967), 361–390. MR 229753, DOI 10.1090/S0002-9947-1967-0229753-8
- Edwin Hewitt and Kenneth A. Ross, Abstract harmonic analysis. Vol. I, 2nd ed., Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 115, Springer-Verlag, Berlin-New York, 1979. Structure of topological groups, integration theory, group representations. MR 551496
- Edwin Hewitt and Kenneth A. Ross, Abstract harmonic analysis. Vol. II: Structure and analysis for compact groups. Analysis on locally compact Abelian groups, Die Grundlehren der mathematischen Wissenschaften, Band 152, Springer-Verlag, New York-Berlin, 1970. MR 0262773
- G. Hochschild, The structure of Lie groups, Holden-Day, Inc., San Francisco-London-Amsterdam, 1965. MR 0207883
- Deane Montgomery and Leo Zippin, Topological transformation groups, Interscience Publishers, New York-London, 1955. MR 0073104
- Edwin H. Spanier, Algebraic topology, McGraw-Hill Book Co., New York-Toronto-London, 1966. MR 0210112
- H. Weyl, Theorie der Darstellung kontinuierlicher halb-einfacher Gruppen durch lineare Transformationen. III, Math. Z. 24 (1926), no. 1, 377–395 (German). MR 1544770, DOI 10.1007/BF01216789
Bibliographic Information
- © Copyright 1974 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 200 (1974), 345-353
- MSC: Primary 57E99; Secondary 22A05
- DOI: https://doi.org/10.1090/S0002-9947-1974-0368057-3
- MathSciNet review: 0368057