Topological semigroups and representations. I
HTML articles powered by AMS MathViewer
- by James C. S. Wong
- Trans. Amer. Math. Soc. 200 (1974), 89-109
- DOI: https://doi.org/10.1090/S0002-9947-1974-0369604-8
- PDF | Request permission
Abstract:
Let $S$ be a topological semigroup (separately continuous multiplication) with identity and $W(S)$ the Banach space of all weakly almost periodic functions on $S$. It is well known that if $S = G$ is a locally compact group, then $W(G)$ always has a (unique) invariant mean. In other words, there exists $m \in W{(G)^ \ast }$ such that $||m|| = m(1) = 1$ and $m({l_s}f) = m({r_s}f) = m(f)$ for any $s \in G,f \in W(G)$ where ${l_s}f(t) = f(st)$ and ${r_s}f(t) = f(ts),t \in S$ The main purpose of this paper is to present several characterisations (functional analytic and algebraic) of the existence of a left (right) invariant mean on $W(S)$ In particular, we prove that $W(S)$ has a left (right) invariant mean iff a certain compact topological semigroup $p{(S)^\omega }$ (to be defined) associated with $S$ contains a right (left) zero. Other results in this direction are also obtained.References
- L. N. Argabright, Invariant means and fixed points: A sequel to Mitchell’s paper, Trans. Amer. Math. Soc. 130 (1968), 127–130. MR 217578, DOI 10.1090/S0002-9947-1968-0217578-X
- Mahlon M. Day, Amenable semigroups, Illinois J. Math. 1 (1957), 509–544. MR 92128
- K. de Leeuw and I. Glicksberg, Applications of almost periodic compactifications, Acta Math. 105 (1961), 63–97. MR 131784, DOI 10.1007/BF02559535
- Nelson Dunford and Jacob T. Schwartz, Linear Operators. I. General Theory, Pure and Applied Mathematics, Vol. 7, Interscience Publishers, Inc., New York; Interscience Publishers Ltd., London, 1958. With the assistance of W. G. Bade and R. G. Bartle. MR 0117523
- W. F. Eberlein, Abstract ergodic theorems and weak almost periodic functions, Trans. Amer. Math. Soc. 67 (1949), 217–240. MR 36455, DOI 10.1090/S0002-9947-1949-0036455-9
- E. Granirer, Extremely amenable semigroups, Math. Scand. 17 (1965), 177–197. MR 197595, DOI 10.7146/math.scand.a-10772
- E. Granirer, Extremely amenable semigroups. II, Math. Scand. 20 (1967), 93–113. MR 212551, DOI 10.7146/math.scand.a-10825
- Edmond E. Granirer, Functional analytic properties of extremely amenable semigroups, Trans. Amer. Math. Soc. 137 (1969), 53–75. MR 239408, DOI 10.1090/S0002-9947-1969-0239408-3
- Frederick P. Greenleaf, Invariant means on topological groups and their applications, Van Nostrand Mathematical Studies, No. 16, Van Nostrand Reinhold Co., New York-Toronto-London, 1969. MR 0251549
- R. D. Holmes and Anthony T. Lau, Non-expansive actions of topological semigroups and fixed points, J. London Math. Soc. (2) 5 (1972), 330–336. MR 313895, DOI 10.1112/jlms/s2-5.2.330
- John L. Kelley, General topology, D. Van Nostrand Co., Inc., Toronto-New York-London, 1955. MR 0070144
- Anthomy ToMing Lau, Invariant means on almost periodic functions and fixed point properties, Rocky Mountain J. Math. 3 (1973), 69–76. MR 324313, DOI 10.1216/RMJ-1973-3-1-69
- Theodore Mitchell, Constant functions and left invariant means on semigroups, Trans. Amer. Math. Soc. 119 (1965), 244–261. MR 193523, DOI 10.1090/S0002-9947-1965-0193523-8
- Theodore Mitchell, Fixed points and multiplicative left invariant means, Trans. Amer. Math. Soc. 122 (1966), 195–202. MR 190249, DOI 10.1090/S0002-9947-1966-0190249-2
- Theodore Mitchell, Function algebras, means, and fixed points, Trans. Amer. Math. Soc. 130 (1968), 117–126. MR 217577, DOI 10.1090/S0002-9947-1968-0217577-8
- Theodore Mitchell, Topological semigroups and fixed points, Illinois J. Math. 14 (1970), 630–641. MR 270356
- Theodore Mitchell, Fixed points of reversible semigroups of nonexpansive mappings, K\B{o}dai Math. Sem. Rep. 22 (1970), 322–323. MR 267414
- Robert R. Phelps, Lectures on Choquet’s theorem, D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto, Ont.-London, 1966. MR 0193470
Bibliographic Information
- © Copyright 1974 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 200 (1974), 89-109
- MSC: Primary 22A20
- DOI: https://doi.org/10.1090/S0002-9947-1974-0369604-8
- MathSciNet review: 0369604