Right-bounded factors in an LCM domain
HTML articles powered by AMS MathViewer
- by Raymond A. Beauregard
- Trans. Amer. Math. Soc. 200 (1974), 251-266
- DOI: https://doi.org/10.1090/S0002-9947-1974-0379553-7
- PDF | Request permission
Abstract:
A right-bounded factor is an element in a ring that generates a right ideal which contains a nonzero two-sided ideal. Right-bounded factors in an LCM domain are considered as a generalization of the theory of two-sided bounded factors in an atomic $2$-fir, that is, a weak Bezout domain satisfying the acc and dcc for left factors. Although some elementary properties are valid in a more general context most of the main results are obtained for an LCM domain satisfying $({\text {M}})$ and the dcc for left factors; the condition $({\text {M}})$ is imposed to insure that prime factorizations are unique in an appropriate sense. The right bound ${b^ \ast }$ of a right bounded element $b$ is considered in general, then in case $b$ is a prime, and finally in case $b$ is indecomposable. The effect of assuming that right bounds are two-sided is also considered.References
- Raymond A. Beauregard, Infinite primes and unique factorization in a principal right ideal domain, Trans. Amer. Math. Soc. 141 (1969), 245β253. MR 242879, DOI 10.1090/S0002-9947-1969-0242879-X
- Raymond A. Beauregard, Right $\textrm {LCM}$ domains, Proc. Amer. Math. Soc. 30 (1971), 1β7. MR 279125, DOI 10.1090/S0002-9939-1971-0279125-1
- Raymond A. Beauregard, Right quotient rings of a right LCM domain, Canadian J. Math. 24 (1972), 938β988. MR 309981, DOI 10.4153/CJM-1972-099-3
- Raymond A. Beauregard, Chain type decomposition in integral domains, Proc. Amer. Math. Soc. 39 (1973), 77β80. MR 314884, DOI 10.1090/S0002-9939-1973-0314884-2
- Raymond A. Beauregard, On the inversion of right invariant elements, Canad. Math. Bull. 18 (1975), no.Β 2, 289β290. MR 384846, DOI 10.4153/CMB-1975-054-x
- A. J. Bowtell and P. M. Cohn, Bounded and invariant elements in $2$-firs, Proc. Cambridge Philos. Soc. 69 (1971), 1β12. MR 271156, DOI 10.1017/s0305004100046375
- Hans-Heinrich Brungs, Ringe mit eindeutiger Faktorzerlegung, J. Reine Angew. Math. 236 (1969), 43β66 (German). MR 249462, DOI 10.1515/crll.1969.236.43
- P. M. Cohn, Noncommutative unique factorization domains, Trans. Amer. Math. Soc. 109 (1963), 313β331. MR 155851, DOI 10.1090/S0002-9947-1963-0155851-X
- P. M. Cohn, Torsion modules over free ideal rings, Proc. London Math. Soc. (3) 17 (1967), 577β599. MR 222112, DOI 10.1112/plms/s3-17.4.577
- P. M. Cohn, Free rings and their relations, London Mathematical Society Monographs, No. 2, Academic Press, London-New York, 1971. MR 0371938
- Nathan Jacobson, The Theory of Rings, American Mathematical Society Mathematical Surveys, Vol. II, American Mathematical Society, New York, 1943. MR 0008601
- Arun Vinayak Jategaonkar, Left principal ideal domains, J. Algebra 8 (1968), 148β155. MR 218387, DOI 10.1016/0021-8693(68)90040-9
Bibliographic Information
- © Copyright 1974 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 200 (1974), 251-266
- MSC: Primary 16A02
- DOI: https://doi.org/10.1090/S0002-9947-1974-0379553-7
- MathSciNet review: 0379553