A local result for systems of Riemann-Hilbert barrier problems
HTML articles powered by AMS MathViewer
- by Kevin F. Clancey
- Trans. Amer. Math. Soc. 200 (1974), 315-325
- DOI: https://doi.org/10.1090/S0002-9947-1974-0380307-6
- PDF | Request permission
Abstract:
The Riemann-Hilbert barrier problem (for $n$ pairs of functions) \[ G{\Phi ^ + } = {\Phi ^ - } + g\] is investigated for the square integrable functions on a union of analytic Jordan curves $C$ bounding a domain in the complex plane. In the special case, where at each point ${t_0}$ of $C$ the symbol $G$ has at most two essential cluster values ${G_1}({t_0}),{G_2}({t_0})$, then the condition $\det [(1 - \lambda ){G_1}({t_0}) + \lambda {G_2}({t_0})] \ne 0$, for all ${t_0}$ in $C$ and all $\lambda (0 \leqslant \lambda \leqslant 1)$, implies the Riemann-Hilbert operator is Fredholm. In the case, where for some ${t_0}$ in $C$ and some ${\lambda _0}(0 \leqslant {\lambda _0} \leqslant 1),\det [(1 - {\lambda _0}){G_1}({t_0}) + {\lambda _0}{G_2}({t_0})] = 0$, the Riemann-Hilbert operator is not Fredholm. An application is given to systems of singular integral equation on ${L^2}(E)$, where $E$ is a measurable subset of $C$.References
- Arlen Brown and P. R. Halmos, Algebraic properties of Toeplitz operators, J. Reine Angew. Math. 213 (1963/64), 89–102. MR 160136, DOI 10.1007/978-1-4613-8208-9_{1}9
- Allen Devinatz, Toeplitz operators on $H^{2}$ spaces, Trans. Amer. Math. Soc. 112 (1964), 304–317. MR 163174, DOI 10.1090/S0002-9947-1964-0163174-9
- Kevin F. Clancey, The essential spectrum of a class of singular integral operators, Amer. J. Math. 96 (1974), 298–307. MR 361928, DOI 10.2307/2373634
- Ronald G. Douglas, Banach algebra techniques in operator theory, Pure and Applied Mathematics, Vol. 49, Academic Press, New York-London, 1972. MR 0361893
- R. G. Douglas, Banach algebra techniques in the theory of Toeplitz operators, Conference Board of the Mathematical Sciences Regional Conference Series in Mathematics, No. 15, American Mathematical Society, Providence, R.I., 1973. Expository Lectures from the CBMS Regional Conference held at the University of Georgia, Athens, Ga., June 12–16, 1972. MR 0361894
- R. G. Douglas and Donald Sarason, Fredholm Toeplitz operators, Proc. Amer. Math. Soc. 26 (1970), 117–120. MR 259639, DOI 10.1090/S0002-9939-1970-0259639-X
- R. G. Douglas and Harold Widom, Toeplitz operators with locally sectorial symbols, Indiana Univ. Math. J. 20 (1970/71), 385–388. MR 264430, DOI 10.1512/iumj.1970.20.20032
- Theodore W. Gamelin, Uniform algebras, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1969. MR 0410387
- Kenneth Hoffman, Banach spaces of analytic functions, Prentice-Hall Series in Modern Analysis, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1962. MR 0133008 N. I. Mushelišvili, Singular integral equations. Boundary problems of function theory and their application to mathematical physics, OGIZ, Moscow, 1946; English transl., Noordhoff, Groningen, 1953. MR 8, 586; 15, 434.
- Zeev Nehari, Conformal mapping, McGraw-Hill Book Co., Inc., New York-Toronto-London, 1952. MR 0045823
- M. Rabindranathan, On the inversion of Toeplitz operators, J. Math. Mech. 19 (1969/1970), 195–206. MR 0251558, DOI 10.1512/iumj.1970.19.19019
- I. B. Simonenko, Certain general questions of the theory of the Riemann boundary value problem, Izv. Akad. Nauk SSSR Ser. Mat. 32 (1968), 1138–1146 (Russian). MR 0235135
- A. Zygmund, Trigonometric series. 2nd ed. Vols. I, II, Cambridge University Press, New York, 1959. MR 0107776
Bibliographic Information
- © Copyright 1974 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 200 (1974), 315-325
- MSC: Primary 45E05
- DOI: https://doi.org/10.1090/S0002-9947-1974-0380307-6
- MathSciNet review: 0380307