Existence and stability for partial functional differential equations
HTML articles powered by AMS MathViewer
- by C. C. Travis and G. F. Webb
- Trans. Amer. Math. Soc. 200 (1974), 395-418
- DOI: https://doi.org/10.1090/S0002-9947-1974-0382808-3
- PDF | Request permission
Abstract:
The existence and stability properties of a class of partial functional differential equations are investigated. The problem is formulated as an abstract ordinary functional differential equation of the form $du(t)/dt = Au(t) + F({u_t})$, where $A$ is the infinitesimal generator of a strongly continuous semigroup of linear operators $T(t),t \geqslant 0$, on a Banach space $X$ and $F$ is a Lipschitz operator from $C = C([ - r,0];X)$ to $X$. The solutions are studied as a semigroup of linear or nonlinear operators on $C$. In the case that $F$ has Lipschitz constant $L$ and $|T(t)| \leqslant {e^{\omega t}}$, then the asymptotic stability of the solutions is demonstrated when $\omega + L < 0$. Exact regions of stability are determined for some equations where $F$ is linear.References
- H. Brézis and A. Pazy, Convergence and approximation of semigroups of nonlinear operators in Banach spaces, J. Functional Analysis 9 (1972), 63–74. MR 0293452, DOI 10.1016/0022-1236(72)90014-6
- Paul L. Butzer and Hubert Berens, Semi-groups of operators and approximation, Die Grundlehren der mathematischen Wissenschaften, Band 145, Springer-Verlag New York, Inc., New York, 1967. MR 0230022
- M. G. Crandall and T. M. Liggett, Generation of semi-groups of nonlinear transformations on general Banach spaces, Amer. J. Math. 93 (1971), 265–298. MR 287357, DOI 10.2307/2373376
- Nelson Dunford and Jacob T. Schwartz, Linear Operators. I. General Theory, Pure and Applied Mathematics, Vol. 7, Interscience Publishers, Inc., New York; Interscience Publishers Ltd., London, 1958. With the assistance of W. G. Bade and R. G. Bartle. MR 0117523
- Jack K. Hale, Linear functional-differential equations with constant coefficients, Contributions to Differential Equations 2 (1963), 291–317 (1963). MR 152725
- Jack K. Hale, Functional differential equations, Applied Mathematical Sciences, Vol. 3, Springer-Verlag New York, New York-Heidelberg, 1971. MR 0466837
- Einar Hille and Ralph S. Phillips, Functional analysis and semi-groups, American Mathematical Society Colloquium Publications, Vol. 31, American Mathematical Society, Providence, R.I., 1957. rev. ed. MR 0089373
- Tosio Kato, Perturbation theory for linear operators, Die Grundlehren der mathematischen Wissenschaften, Band 132, Springer-Verlag New York, Inc., New York, 1966. MR 0203473
- A. Pazy, On the differentiability and compactness of semigroups of linear operators, J. Math. Mech. 17 (1968), 1131–1141. MR 0231242
- H. L. Royden, Real analysis, The Macmillan Company, New York; Collier Macmillan Ltd., London, 1963. MR 0151555
- Irving Segal, Non-linear semi-groups, Ann. of Math. (2) 78 (1963), 339–364. MR 152908, DOI 10.2307/1970347
- Angus E. Taylor, Introduction to functional analysis, John Wiley & Sons, Inc., New York; Chapman & Hall, Ltd., London, 1958. MR 0098966
- G. F. Webb, Autonomous nonlinear functional differential equations and nonlinear semigroups, J. Math. Anal. Appl. 46 (1974), 1–12. MR 348224, DOI 10.1016/0022-247X(74)90277-7
- Kôsaku Yosida, Functional analysis, 2nd ed., Die Grundlehren der mathematischen Wissenschaften, Band 123, Springer-Verlag New York, Inc., New York, 1968. MR 0239384
Bibliographic Information
- © Copyright 1974 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 200 (1974), 395-418
- MSC: Primary 34G05; Secondary 35R10, 47H15
- DOI: https://doi.org/10.1090/S0002-9947-1974-0382808-3
- MathSciNet review: 0382808