Solvable groups and quadratic forms
HTML articles powered by AMS MathViewer
- by Richard Tolimieri
- Trans. Amer. Math. Soc. 201 (1975), 329-345
- DOI: https://doi.org/10.1090/S0002-9947-1975-0354552-0
- PDF | Request permission
Abstract:
A solvable Lie group and a unitary representation are constructed from a given binary quadratic form. The multiplicity of this representation is related to the arithmetic of the form.References
- L. Auslander and J. Brezin, Fibre bundle structures and harmonic analysis on Heisenberg manifolds, Proc. Maryland Conference on Harmonic Analysis, Springer-Verlag, New York, 1973.
- J. Brezin, Function theory on metabelian solvmanifolds, J. Functional Analysis 10 (1972), 33–51. MR 0348401, DOI 10.1016/0022-1236(72)90056-0
- George W. Mackey, Induced representations of locally compact groups. I, Ann. of Math. (2) 55 (1952), 101–139. MR 44536, DOI 10.2307/1969423
- C. L. Siegel, Lectures on quadratic forms, Tata Institute of Fundamental Research Lectures on Mathematics, No. 7, Tata Institute of Fundamental Research, Bombay, 1967. Notes by K. G. Ramanathan. MR 0271028
Bibliographic Information
- © Copyright 1975 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 201 (1975), 329-345
- MSC: Primary 10C05; Secondary 12A45, 22E45
- DOI: https://doi.org/10.1090/S0002-9947-1975-0354552-0
- MathSciNet review: 0354552