Associated and perspective simplexes
HTML articles powered by AMS MathViewer
- by Leon Gerber
- Trans. Amer. Math. Soc. 201 (1975), 43-55
- DOI: https://doi.org/10.1090/S0002-9947-1975-0355788-5
- PDF | Request permission
Abstract:
A set of $n + 1$ lines in $n$-space such that any $({\text {n}} - 2)$-dimensional flat which meets $n$ of the lines also meets the remaining line is said to be an associated set of lines. Two Simplexes are associated if the joins of corresponding vertices are associated. A simple criterion is given for simplexes to be associated and an analogous one for Simplexes to be perspective. These are used to give a brief proof of the following generalization of the theorem of Pappus. Let $\mathcal {A}$ and $\mathcal {B}$ be $n$-simplexes and let $p$ be a permutation on the vertices of $\mathcal {B}$. If $\mathcal {A}$ and $\mathcal {B}$ are associated (respectively perspective) and $\mathcal {A}$ and $\mathcal {B}p$ are associated (perspective) then $\mathcal {A}$ and $\mathcal {B}{p^k}$ are associated (perspective) for any integer $k$. Very short proofs are given of extensions to $n$-dimensions of many theorems from Neuberg’s famous Memoir sur le Tétraèdre, such as: the altitudes of a simplex are associated.References
- H. F. Baker, Principles of geometry. Vol. IV, Cambridge Univ. Press, New York, 1940.
L. Berzolari, Sui sistemi di $n + 1$ rette dello spazio ad $n$ dimensioni situati in posizione di Schläfli, Rend. Circ. Mat. Palermo (2) 20 (1905), 229-247.
- Nathan Altshiller-Court, Modern pure solid geometry, 2nd ed., Chelsea Publishing Co., New York, 1964. MR 0172153
- H. S. M. Coxeter, Introduction to geometry, John Wiley & Sons, Inc., New York-London, 1961. MR 0123930
- S. Beatty and J. A. Todd, Problems and Solutions: Advanced Problems: Solutions: 4079, Amer. Math. Monthly 51 (1944), no. 10, 599–600. MR 1526100, DOI 10.2307/2304597
- Leon Gerber, Spheres tangent to all the faces of a simplex, J. Combinatorial Theory Ser. A 12 (1972), 453–456. MR 298555, DOI 10.1016/0097-3165(72)90106-9
- Leon Gerber, The altitudes of a simplex are associated, Math. Mag. 46 (1973), 155–157. MR 319034, DOI 10.2307/2687971
- Haim Hanani, On a point of minimum sum of distances-squares from the faces of a simplex, Riveon Lematematika 7 (1954), 10–12 (Hebrew, with English summary). MR 58995
- D. Hilbert and S. Cohn-Vossen, Geometry and the imagination, Chelsea Publishing Co., New York, N. Y., 1952. Translated by P. Neményi. MR 0046650
- Sahib Ram Mandan, Altitudes of a general $n$-simplex, J. Austral. Math. Soc. 5 (1965), 409–415. MR 0188845, DOI 10.1017/S1446788700028433
- Sahib Ram Mandan, Desargues’ theorem in $n$-space, J. Austral. Math. Soc. 1 (1959/1960), 311–318. MR 0126751, DOI 10.1017/S1446788700025982
- Sahib Ram Mandan, Isodynamic $\&$ isogonic simplexes, Ann. Mat. Pura Appl. (4) 53 (1961), 45–55. MR 123932, DOI 10.1007/BF02417784 J. Neuberg, Memoir sur le tétraèdre, Académie Royale des Sciences des lettres et des beaux-arts de Belgique, Mémoires couronnés 37 (1884), 1-72. —, Über hyperboloidische Würfe, Arch. Math. Phys. (3) 12 (1907), 297-305. L. Schläfli, Erweiterung des Satzes, das zwei polare Dreiecke perspectivisch liegen, auf eine beliebige Zahl von Dimensionen, J. Reine Angew. Math. 65 (1866), 189-197 (= Gesammelte mathematische A bhandlungen. Bd. III, Verlag Birkhäuser, Basel, 1956, pp. 9-20. MR 17, 814). H. M. Taylor, Solution of question 15886, Educational Times Reprints (2) 10 (1906), 48. V. Thébault, Parmi les belles figures de la géométrie dans l’espace, Librairie Vuibert, Paris, 1955. MR 16, 737. O. Veblen and W. J. Young, Projective geometry, Blaisdell, New York, 1938.
Bibliographic Information
- © Copyright 1975 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 201 (1975), 43-55
- MSC: Primary 50B10
- DOI: https://doi.org/10.1090/S0002-9947-1975-0355788-5
- MathSciNet review: 0355788