A homotopy theory of pro-spaces
HTML articles powered by AMS MathViewer
- by Jerrold W. Grossman
- Trans. Amer. Math. Soc. 201 (1975), 161-176
- DOI: https://doi.org/10.1090/S0002-9947-1975-0356039-8
- PDF | Request permission
Abstract:
The category of towers of spaces, $\ldots \to {X_{s + 1}} \to {X_s} \to \ldots \to {X_0}$, viewed as pro-spaces, appears to be useful in the study of the relation between homology and homotopy of nonsimply connected spaces. We show that this category admits the structure of a closed model category, in the sense of Quillen; notions of fibration, cofibration, and weak equivalence are defined and shown to satisfy fundamental properties that the corresponding notions satisfy in the category of spaces. This enables one to develop a “homotopy theory” for pro-spaces.References
- M. Artin and B. Mazur, Étale homotopy, Lecture Notes in Math., no. 100, Springer-Verlag, Berlin and New York, 1969. MR 39 #6883.
- A. K. Bousfield and D. M. Kan, Homotopy limits, completions and localizations, Lecture Notes in Mathematics, Vol. 304, Springer-Verlag, Berlin-New York, 1972. MR 0365573, DOI 10.1007/978-3-540-38117-4
- Emmanuel Dror, Pro-nilpotent representation of homology types, Proc. Amer. Math. Soc. 38 (1973), 657–660. MR 314041, DOI 10.1090/S0002-9939-1973-0314041-X
- J. Peter May, Simplicial objects in algebraic topology, Van Nostrand Mathematical Studies, No. 11, D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto, Ont.-London, 1967. MR 0222892
- Daniel G. Quillen, Homotopical algebra, Lecture Notes in Mathematics, No. 43, Springer-Verlag, Berlin-New York, 1967. MR 0223432, DOI 10.1007/BFb0097438
- Daniel Quillen, Rational homotopy theory, Ann. of Math. (2) 90 (1969), 205–295. MR 258031, DOI 10.2307/1970725
- Edwin H. Spanier, Algebraic topology, McGraw-Hill Book Co., New York-Toronto-London, 1966. MR 0210112
Bibliographic Information
- © Copyright 1975 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 201 (1975), 161-176
- MSC: Primary 55D05
- DOI: https://doi.org/10.1090/S0002-9947-1975-0356039-8
- MathSciNet review: 0356039