Deformations of group actions
HTML articles powered by AMS MathViewer
- by Allan L. Edmonds
- Trans. Amer. Math. Soc. 201 (1975), 147-160
- DOI: https://doi.org/10.1090/S0002-9947-1975-0362321-0
- PDF | Request permission
Abstract:
Let $G$ be a finite group and $M$ be a compact piecewise linear (PL) manifold. Define a PL $G$-isotopy to be a level-preserving PL action of $G$ on $M \times [0,1]$. In this paper PL $G$-isotopies are studied and PL $G$-isotopic actions (which need not be equivalent) are characterized.References
- R. H. Bing, A homeomorphism between the $3$-sphere and the sum of two solid horned spheres, Ann. of Math. (2) 56 (1952), 354–362. MR 49549, DOI 10.2307/1969804
- Glen E. Bredon, Introduction to compact transformation groups, Pure and Applied Mathematics, Vol. 46, Academic Press, New York-London, 1972. MR 0413144
- Robert Connelly, A new proof of Brown’s collaring theorem, Proc. Amer. Math. Soc. 27 (1971), 180–182. MR 267588, DOI 10.1090/S0002-9939-1971-0267588-7
- M. L. Curtis, Cartesian products with intervals, Proc. Amer. Math. Soc. 12 (1961), 819–820. MR 126286, DOI 10.1090/S0002-9939-1961-0126286-4
- Allan L. Edmonds, Deformations of group actions, Bull. Amer. Math. Soc. 79 (1973), 1254–1257. MR 331413, DOI 10.1090/S0002-9904-1973-13402-0 —, Local connectedness of spaces of finite group actions (to appear).
- J. F. P. Hudson, Piecewise linear topology, W. A. Benjamin, Inc., New York-Amsterdam, 1969. University of Chicago Lecture Notes prepared with the assistance of J. L. Shaneson and J. Lees. MR 0248844
- Lowell Jones, The converse to the fixed point theorem of P. A. Smith. I, Ann. of Math. (2) 94 (1971), 52–68. MR 295361, DOI 10.2307/1970734
- Michel A. Kervaire, Le théorème de Barden-Mazur-Stallings, Comment. Math. Helv. 40 (1965), 31–42 (French). MR 189048, DOI 10.1007/BF02564363
- J. Milnor, Some free actions of cyclic groups on spheres, Differential Analysis, Bombay Colloq., 1964, Oxford Univ. Press, London, 1964, pp. 37–42. MR 0189055
- Richard S. Palais, Equivalence of nearby differentiable actions of a compact group, Bull. Amer. Math. Soc. 67 (1961), 362–364. MR 130321, DOI 10.1090/S0002-9904-1961-10617-4
- Richard S. Palais and Thomas E. Stewart, Deformations of compact differentiable transformation groups, Amer. J. Math. 82 (1960), 935–937. MR 120652, DOI 10.2307/2372950
Bibliographic Information
- © Copyright 1975 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 201 (1975), 147-160
- MSC: Primary 57C25; Secondary 57E25
- DOI: https://doi.org/10.1090/S0002-9947-1975-0362321-0
- MathSciNet review: 0362321