ON THE ANALYTIC CONTINUATION
OF THE MINAKSHISUNDARAM-PLEIJEL ZETA FUNCTION
FOR COMPACT RIEMANN SURFACES

BY

BURTON RANDOL

ABSTRACT. A formula is derived for the Minakshisundaram-Pleijel zeta
function in the half-plane $\Re s < 0$.

Let S be a compact Riemann surface, which we will regard as the quotient
of the upper half-plane H by a discontinuous group Γ of hyperbolic transfor-
mations. We will assume that H is endowed with the metric $y^{-2}((dx)^2 + (dy)^2)$,
and we will denote the area of S by A. Let $0 = \lambda_0 < \lambda_1 \leq \lambda_2 \leq \cdots$
be the eigenvalues corresponding to the problem $\Delta f + \lambda f = 0$ on S, where Δ
is the Laplace operator on S, derived from the metric induced on S by that of H. In
the coordinates of H, the Laplacian is $y^2(\partial^2/\partial x^2 + \partial^2/\partial y^2)$. Finally, let
$Z(s) = \sum_{n=1}^{\infty} \lambda_n^{-s}$. Since it is known [3] that $A(\tau) = 2\pi^2 \tau^2$ is asymptotic to $(A/4\pi)\tau$,
it follows that the series for $Z(s)$ converges absolutely in the half-plane $\Re s > 1$.

In this note we will use the Selberg trace formula to derive an expression for
the continuation of $Z(s)$ in the half-plane $\Re s < 0$. Accounts of the trace for-
mula can be found in [1], [2], and [4]. The formula, adjusted to the present situ-
tion, goes as follows.

Suppose $h(z)$ is an even function, holomorphic in a strip of the form
$|\Im z| < \frac{1}{2} + \epsilon$ ($\epsilon > 0$), and satisfying a growth condition of the form $|h(z)| = O((1 + |z|^2)^{-1-\epsilon})$ uniformly in the strip. Associate with the sequence $\lambda_0, \lambda_1, \lambda_2, \cdots$ of eigenvalues the set R consisting of those numbers which satisfy an
equation of the form $\lambda_n = \frac{1}{4} + r^2$ ($n = 0, 1, 2, \cdots$). Apart from the possibility
$r = 0$, the elements of R will then occur in pairs, of which each member is the
negative of the other, and it is always the case that every element of R is either
real or pure imaginary, with imaginary part $\leq \frac{1}{2}$. If one of the λ_n's happens to
be $\frac{1}{4}$, the corresponding $r = 0$ will be counted with double multiplicity in its
occurrence on the left side of the trace formula.

Now all the elements of Γ except the identity are hyperbolic. I.e., each
$\gamma \in \Gamma$ is conjugate in $PSL(2, R)$ to a unique transformation of the form

Received by the editors December 10, 1973.

$z \rightarrow e^{t \gamma} z$, where l_γ is real and positive. For geometric reasons, we will call the number l_γ the length of the transformation γ (cf. [2]). Clearly l_γ is the same within a conjugacy class. We will denote by $\{\gamma\}$ the conjugacy class corresponding to γ within Γ itself. Also, we will call $\gamma \in \Gamma$ primitive, if it is not a positive integral power of any other element of Γ. Clearly we can speak of a conjugacy class in Γ as being primitive. The trace formula then reads

$$\sum_{r_n \in R} h(r) = \frac{A}{2\pi} \int_{-\infty}^{\infty} h(r) r \tanh nr dr + \sum_{\{\gamma\}_p} \sum_{n=1}^{\infty} (l_\gamma \csch \frac{1}{2} nl_\gamma) h(nl_\gamma),$$

where

$$\hat{h}(x) = (2\pi)^{-1} \int_{-\infty}^{\infty} e^{-ixr} h(r) dr,$$

and the outer sum is taken over all primitive conjugacy classes in Γ. Moreover, all series in the formula converge absolutely.

In order to study $Z(s)$, it is convenient to begin by studying a more general Dirichlet series. Namely, suppose $e > 0$, and define $Z_e(s) = \sum_{n=0}^{\infty} (\lambda_n + e)^{-s}$. As before, the series converges absolutely in the half-plane $\Re s > 1$. Next define $a > \frac{1}{2}$ by requiring that $\alpha^2 - \frac{1}{4} = e$. Letting t be a positive number and setting $h(r) = e^{-(\alpha^2 + r^2)t}$ in the trace formula, we obtain

$$\sum_{n=0}^{\infty} e^{-(\lambda_n + e)t} = \frac{A}{4\pi} \int_{-\infty}^{\infty} e^{-(\alpha^2 + r^2)t} r \tanh nr dr$$

$$+ \frac{1}{2} (4\pi t)^{-1/2} \sum_{\{\gamma\}_p} \sum_{n=1}^{\infty} (l_\gamma \csch \frac{1}{2} nl_\gamma) e^{-(4\alpha^2 t^2 + n^2/4)}$$

with all series convergent.

Denote by $\theta_1^e(t)$ and $\theta_2^e(t)$, respectively, the first and second terms on the right side of (1). Then $\sum_{n=1}^{\infty} e^{-(\lambda_n + e)t} = \theta_1^e(t) + \theta_2^e(t) - e^{-et}$.

Throughout what follows, when we say that a result holds uniformly in e, we will mean that it holds uniformly for $e \in [0, 1]$, or what is the same thing, for $\alpha \in [1/2, \sqrt{5}/2]$.

The following two lemmas are obvious.

Lemma 1. $\sum_{n=1}^{\infty} e^{-(\lambda_n + e)t} = O(e^{-\lambda_1 t})$ uniformly in e, as $t \to \infty$.

Lemma 2. $\theta_1^e(t) = O(e^{-t/4})$ uniformly in e, as $t \to \infty$.

Combining Lemmas 1 and 2, we obtain the following lemma.

Lemma 3. $\theta_2^e(t) - e^{-et} = O(e^{-\min(\lambda_1, 1/4)t})$ uniformly in e, as $t \to \infty$.

Lemma 4. $\theta_2^e(t)$ is of rapid decrease as $t \to 0$, uniformly in e. I.e., for any negative integer k, $t^k \theta_2^e(t) \to 0$ as $t \to 0$, uniformly in e.

Proof. For any \(k, t^k \theta_2^\varepsilon(t) \) is equal to a convergent series of positive terms. Moreover, for \(t \) less than some \(\eta \), which depends on \(k \) but can be taken independent of \(\varepsilon \), the terms all tend monotonically to zero as \(t \uparrow 0 \). The result then follows from Beppo Levi's theorem.

Lemma 5. Define \(\theta_2^\varepsilon(0) = 0 \). Then for each \(\varepsilon \geq 0 \), \(\theta_2^\varepsilon(t) \) is continuous, and the series for \(\theta_2^\varepsilon(t) \) converges uniformly to \(\theta_2^0(t) \) on compact subsets of \([0, \infty)\).

Proof. For any \(\varepsilon \geq 0 \), \(\theta_2^\varepsilon(t) \) is continuous at \(t = 0 \) by Lemma 4. For \(t > 0 \), \(\theta_2^\varepsilon(t) \) is clearly continuous, being a linear combination of three continuous functions. Moreover, since all the terms of the series that defines \(\theta_2^\varepsilon(t) \) are positive, it follows from Dini's theorem that the series converges uniformly on compact subsets of \([0, \infty)\).

Lemma 6. On any compact subset of \([0, \infty)\), \(\theta_2^\varepsilon(t) \to \theta_2^0(t) \) uniformly, as \(\varepsilon \to 0 \).

Proof. \(\theta_2^\varepsilon(t) \) increases monotonically to \(\theta_2^0(t) \) as \(\varepsilon \downarrow 0 \). The result thus follows from Dini's theorem.

Now suppose \(\Re s > 1 \). Taking the Mellin transform of \(\sum_{n=1}^{\infty} e^{-(\lambda_n + \varepsilon)t} \), and adding \(1/s \) to the result, we obtain

\[
\Gamma(s)Z_\varepsilon(s) + \frac{1}{s} = \frac{A\Gamma(s)}{4\pi} \int_{-\infty}^{\infty} (\alpha^2 + r^2)^{-s} r \tanh \pi r \, dr + \int_0^{\infty} (\theta_2^\varepsilon(t) - e^{-\varepsilon t}) t^s \frac{dt}{t} + \frac{1}{s},
\]

or

\[
\Gamma(s)Z_\varepsilon(s) + \frac{1}{s} = \frac{A\Gamma(s)}{8(s - 1)} \int_{-\infty}^{\infty} (\alpha^2 + r^2)^{1-s} \text{sech}^2 \pi r \, dr
\]

\[
= \int_0^1 (\theta_2^\varepsilon(t) + 1 - e^{-\varepsilon t}) t^s \frac{dt}{t} + \int_1^{\infty} (\theta_2^\varepsilon(t) - e^{-\varepsilon t}) t^s \frac{dt}{t}.
\]

In view of Lemmas 3 and 4, the right side of the last equation gives, for any \(\varepsilon \geq 0 \), a meromorphic continuation of \(\Gamma(s)Z_\varepsilon(s) + 1/s \), and hence of \(\Gamma(s)Z_\varepsilon(s) \), into \(\Re s > -1 \), and indeed, into the whole plane if \(\varepsilon = 0 \) (since the first and third integrals are entire for any \(\varepsilon \geq 0 \), and the second integral is holomorphic in \(\Re s > -1 \), and entire if \(\varepsilon = 0 \)). If \(\varepsilon > 0 \), and we observe, using the power series for \(e^{-\varepsilon t} \), that \(\int_0^1 (1 - e^{-\varepsilon t}) t^s \, dt/t \) can be continued to the left of \(\Re s > -1 \), with simple poles at the negative integers, we obtain a meromorphic continuation of \(\Gamma(s)Z_\varepsilon(s) \) into the entire plane in this case as well. Since it is clear from this that the only possible poles of \(\Gamma(s)Z_\varepsilon(s) \) are simple poles at \(1, 0, -1, -2, \cdots \), with the pole at \(s = 1 \) always present, we
conclude that for any \(\epsilon > 0 \), \(Z_{\epsilon}(s) \) can be meromorphically continued into the whole plane, with a single simple pole at \(s = 1 \), having residue \(A/4\pi \) (since \(\int_{-\infty}^{\infty} \text{sech}^2 \pi r \, dr = 2/\pi \)).

Suppose now \(\Re s > -1 \), and \(s \neq 0, 1 \). Then in view of Lemma 6, it is evident, by inspecting the right side of (2), bearing in mind Lemmas 3 and 4, that \(\Gamma(s)Z_{\epsilon}(s) + 1/s \to \Gamma(s)Z(s) + 1/s \), and hence \(\Gamma(s)Z_{\epsilon}(s) \to \Gamma(s)Z(s) \), as \(\epsilon \to 0 \).

On the other hand, if \(\Re s > 0 \),

\[
\Gamma(s)Z_{\epsilon}(s) = \frac{A\Gamma(s)}{8(s-1)} \int_{-\infty}^{\infty} (\alpha^2 + r^2)^{1-s} \text{sech}^2 \pi r \, dr
\]

and if \(\epsilon > 0 \), it is permissible to split the last integral into two integrals, since it follows from Lemma 3 that for positive \(\epsilon \), \(\theta_{2/4}(t) \) is of exponential decrease as \(t \to \infty \). We thus obtain, at first for \(\Re s > 0 \), and then for the whole plane by analytic continuation,

\[
\Gamma(s)Z_{\epsilon}(s) = \frac{A\Gamma(s)}{8(s-1)} \int_{-\infty}^{\infty} (\alpha^2 + r^2)^{1-s} \text{sech}^2 \pi r \, dr
\]

Now taking \(-1 < \Re s < 0 \), letting \(\epsilon \to 0 \), and bearing in mind that by Lemma 3, \(\theta_{2/4}(t) = O(1) \) uniformly in \(\epsilon \), as \(t \to \infty \), we find that

\[
\Gamma(s)Z(s) = \frac{A\Gamma(s)}{8(s-1)} \int_{-\infty}^{\infty} (\alpha^2 + r^2)^{1-s} \text{sech}^2 \pi r \, dr + \int_{0}^{\infty} \theta_{2/4}(t) t^{s} \, dt
\]

Since both integrals are holomorphic in \(\Re s < 0 \), we have obtained an expression for \(\Gamma(s)Z(s) \) in the left half-plane.

Let us examine \(\int_{0}^{\infty} \theta_{2/4}(t) t^{s} \, dt/s \), assuming \(\Re s < 0 \). Now

\[
\int_{0}^{\infty} e^{-(t^2 + (nl_{\gamma})^2)/4t} t^{s-1/2} \frac{dt}{t} = 2(nl_{\gamma})^{s-1/2} K_{1/2-s}(\sqrt{nl_{\gamma}}) \quad [5, \text{p. 183}],
\]

so we obtain the following result (the interchange of summation and integration being justified by Lemma 5):

Theorem 1. If \(\Re s < 0 \),

\[
\Gamma(s)Z(s) = \frac{A\Gamma(s)}{8(s-1)} \int_{-\infty}^{\infty} (\alpha^2 + r^2)^{1-s} \text{sech}^2 \pi r \, dr
\]

\[
+ (4\pi)^{-1/2} \sum_{\{\gamma\}p} \sum_{n=1}^{\infty} (l_{\gamma}/n)^{1/2} (\text{csch} \sqrt{2nl_{\gamma}}) (nl_{\gamma})^s K_{1/2-s}(\sqrt{2nl_{\gamma}}).
\]

Now if \(\Re s < \frac{1}{2} \),
(\frac{n!}{2\pi i}) = \pi^{1/2} \Gamma(1 - s)(nl^n)^{1/2} \int_0^\infty ((\frac{n}{2} nl^n)^2 + x^2)^{-(1-s)} \cos x \, dx

[5, p. 172],

so if we define \(\phi_s(A) \), for \(\text{Re } s > \frac{1}{2} \) and positive \(A \), by setting \(\phi_s(A) = (2\pi)^{-1} \int_0^\infty ((A/2)^2 + x^2)^{-s} \cos x \, dx \), we obtain the following reformulation of Theorem 1.

Theorem 2. If \(\text{Re } s < 0 \),

\[
\Gamma(s) Z(s) = \frac{A\Gamma(s)}{8(s - 1)} \int_{-\infty}^\infty \left(\frac{1}{4} + r^2 \right)^{-s} \text{sech}^2 \pi r \, dr
\]

\[
+ \Gamma(1 - s) \sum_{\{\gamma\}_p} \sum_{n=1}^\infty \frac{\ell_n (\text{csch } \frac{n}{2} nl^n) \phi_{1-s}(nl^n)}{n^s}.
\]

Suppose now \(\text{Re } s > 1 \). Then

\[
\frac{A\Gamma(s)}{8(s - 1)} \int_{-\infty}^\infty \left(\frac{1}{4} + r^2 \right)^{-s} \text{sech}^2 \pi r \, dr = \frac{A\Gamma(s)}{2\pi} \int_0^\infty \left(\frac{1}{4} + r^2 \right)^{-s} r \tanh \pi r \, dr.
\]

Now as we have pointed out, it is well known that \(\Sigma_{\lambda \leq T} 1 \sim AT/4\pi \), so it follows that \(\Sigma_{0 < r_n < T} 1 \sim AT^2/4\pi. \) But \((A/2\pi)\int_0^T r \tanh \pi r \, dr \sim AT^2/4\pi\), and in view of the trace formula, is the correct principal term in the asymptotic analysis of \(\Sigma_{0 < r_n < T} 1 \). This suggests defining a remainder term

\[
R(T) = \sum_{0 < r_n < T} 1 - \frac{A}{2\pi} \int_0^T r \tanh \pi r \, dr.
\]

Then if we denote the eigenvalues in \((0, \frac{1}{4})\) by \(\lambda_1, \cdots, \lambda_N \), and define \(\lambda(r) = \frac{1}{4} + r^2 \), Theorem 2 and the previous arguments tell us that \(\Gamma(s) \{ \sum_{n=1}^N \lambda_n^{-s} + \int_0^\infty \lambda^{-s} dR(r) \} \) can be meromorphically continued from \(\text{Re } s > 1 \) into the whole plane, and for \(\text{Re } s < 0 \), equals \(\Gamma(1 - s) \Phi(1 - s) \), where \(\Phi(s) \) is defined in the half-plane \(\text{Re } s > 1 \) by setting

\[
\Phi(s) = \sum_{\{\gamma\}_p} \sum_{n=1}^\infty \frac{\ell_n (\text{csch } \frac{n}{2} nl^n) \phi_{1-s}(nl^n)}{n^s}.
\]

If, now, we define \(R^*(T) = R(\sqrt{T - \frac{1}{4}}) \), integrate by parts, and make the change of variable \(\lambda = \lambda(r) \), the previous statement becomes the statement that \(\Gamma(s) \{ \sum_{n=1}^N \lambda_n^{-s} + s \int_{1/4}^{\infty} \lambda^{-s-1} R^*(\lambda) \, d\lambda \} \) can be meromorphically continued into the whole plane, and for \(\text{Re } s < 0 \), equals \(\Gamma(1 - s) \Phi(1 - s) \).

Thus, setting

\[
\Psi(s) = s \int_{1/4}^\infty \lambda^{-s-1} R^*(\lambda) \, d\lambda = s \int_{\log(1/4)}^\infty e^{-\lambda s} R^*(e^\lambda) \, d\lambda = \int_{\log(1/4)}^\infty e^{-\lambda s} dR^*(e^\lambda),
\]
we find that \(\Psi(s) \), the Laplace transform of the exponential form of the eigenvalue remainder measure, satisfies the following identity:

Theorem 3. If \(\text{Re} \, s < 0 \), \(\Gamma(s) \{ \sum_{n=1}^{N} \lambda_n^{-s} + \Psi(s) \} = \Gamma(1-s) \Phi(1-s) \).

Corollary. If there are no eigenvalues in \((0, \frac{1}{2})\) and \(\text{Re} \, s < 0 \), we have \(\Gamma(s) \Psi(s) = \Gamma(1-s) \Phi(1-s) \).

REFERENCES

