Fatou properties of monotone seminorms on Riesz spaces
HTML articles powered by AMS MathViewer
- by Theresa K. Y. Chow Dodds
- Trans. Amer. Math. Soc. 202 (1975), 325-337
- DOI: https://doi.org/10.1090/S0002-9947-1975-0355520-5
- PDF | Request permission
Abstract:
A monotone seminorm $\rho$ on a Riesz space $L$ is called $\sigma$-Fatou if $\rho ({u_n}) \uparrow \rho (u)$ holds for every $u \in {L^ + }$ and sequence $\{ {u_n}\}$ in $L$ satisfying $0 \leq {u_n} \uparrow u$. A monotone seminorm $\rho$ on $L$ is called strong Fatou if $\rho ({u_v}) \uparrow \rho (u)$ holds for every $u \in {L^ + }$ and directed system $\{ {u_v}\}$ in $L$ satisfying $0 \leq {u_v} \uparrow u$. In this paper we determine those Riesz spaces $L$ which have the property that, for any monotone seminorm $\rho$ on $L$, the largest strong Fatou seminorm ${\rho _m}$ majorized by $\rho$ is of the form: ${\rho _m}(f) = \inf \{ {\sup _v}\rho ({u_v}):0 \leq {u_v} \uparrow |f|\}$]> for $f \in L$. We discuss, in a Riesz space $L$, the condition that a monotone seminorm $\rho$ as well as its Lorentz seminorm ${\rho _L}$ is $\sigma$-Fatou in terms of the order and relative uniform topologies on $L$. A parallel discussion is also given for outer measures on Boolean algebras.References
- Heinz Bauer, Darstellung additiver Funktionen auf Booleschen Algebren als Mengenfunktionen, Arch. Math. (Basel) 6 (1955), 215–222 (German). MR 69258, DOI 10.1007/BF01900742
- Theresa K. Y. Chow Dodds, Egoroff properties and the order topology in Riesz spaces, Trans. Amer. Math. Soc. 187 (1974), 365–375. MR 336282, DOI 10.1090/S0002-9947-1974-0336282-3 J. A. R. Holbrook, The Egoroff property and related properties in the theory of Riesz spaces, Thesis, California Institute of Technology, 1965.
- John A. R. Holbrook, Seminorms and the Egoroff property in Riesz spaces, Trans. Amer. Math. Soc. 132 (1968), 67–77. MR 228979, DOI 10.1090/S0002-9947-1968-0228979-8
- W. A. J. Luxemburg and L. C. Moore Jr., Archimedean quotient Riesz spaces, Duke Math. J. 34 (1967), 725–739. MR 217562
- W. A. J. Luxemburg and A. C. Zaanen, Notes on Banach function spaces. I, Nederl. Akad. Wetensch. Proc. Ser. A 66 = Indag. Math. 25 (1963), 135–147. MR 0149231, DOI 10.1016/S1385-7258(63)50014-6
- W. A. J. Luxemburg, Notes on Banach function spaces. XIVa, Nederl. Akad. Wetensch. Proc. Ser. A 68=Indag. Math. 27 (1965), 229–239. MR 0188766, DOI 10.1016/S1385-7258(65)50028-7
- W. A. J. Luxemburg, On finitely additive measures in Boolean algebras, J. Reine Angew. Math. 213 (1963/64), 165–173. MR 163859, DOI 10.1515/crll.1964.213.165 W. A. J. Luxemburg and A. C. Zaanen, Riesz spaces. Vol. 1, North-Holland, Amsterdam, 1971. M. A. Woodbury, A decomposition theorem for finitely additive set functions (Preliminary Report), Bull. Amer. Math. Soc. 56 (1950), 171.
- Kôsaku Yosida and Edwin Hewitt, Finitely additive measures, Trans. Amer. Math. Soc. 72 (1952), 46–66. MR 45194, DOI 10.1090/S0002-9947-1952-0045194-X
Bibliographic Information
- © Copyright 1975 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 202 (1975), 325-337
- MSC: Primary 46A40
- DOI: https://doi.org/10.1090/S0002-9947-1975-0355520-5
- MathSciNet review: 0355520