Binomial enumeration on dissects
HTML articles powered by AMS MathViewer
- by Michael Henle
- Trans. Amer. Math. Soc. 202 (1975), 1-39
- DOI: https://doi.org/10.1090/S0002-9947-1975-0357133-8
- PDF | Request permission
Abstract:
The Mullin-Rota theory of binomial enumeration is generalized to an abstract context and applied to rook polynomials, order invariants of posets, Tutte invariants of combinatorial geometries, cycle indices and symmetric functions.References
- George E. Andrews, On the foundations of combinatorial theory. V. Eulerian differential operators, Studies in Appl. Math. 50 (1971), 345–375. MR 309740, DOI 10.1002/sapm1971504345
- Thomas H. Brylawski, A decomposition for combinatorial geometries, Trans. Amer. Math. Soc. 171 (1972), 235–282. MR 309764, DOI 10.1090/S0002-9947-1972-0309764-6
- Peter Doubilet, On the foundations of combinatorial theory. VII. Symmetric functions through the theory of distribution and occupancy, Studies in Appl. Math. 51 (1972), 377–396. MR 429577, DOI 10.1002/sapm1972514377
- H. O. Foulkes, Differential operators associated with $S$-functions, J. London Math. Soc. 24 (1949), 136–143. MR 30500, DOI 10.1112/jlms/s1-24.2.136 A. Garsia, An expose of the Mullin-Rota theory of polynomials of binomial type, J. Multilinear Algebra (1973).
- J. A. Green, The characters of the finite general linear groups, Trans. Amer. Math. Soc. 80 (1955), 402–447. MR 72878, DOI 10.1090/S0002-9947-1955-0072878-2
- Michael Henle, Dissection of generating functions, Studies in Appl. Math. 51 (1972), 397–410. MR 351833, DOI 10.1002/sapm1972514397
- Dudley E. Littlewood, The Theory of Group Characters and Matrix Representations of Groups, Oxford University Press, New York, 1940. MR 0002127
- Percy A. MacMahon, Combinatory analysis, Chelsea Publishing Co., New York, 1960. Two volumes (bound as one). MR 0141605
- Ronald Mullin and Gian-Carlo Rota, On the foundations of combinatorial theory. III. Theory of binomial enumeration, Graph Theory and its Applications (Proc. Advanced Sem., Math. Research Center, Univ. of Wisconsin, Madison, Wis., 1969) Academic Press, New York, 1970, pp. 167–213 (loose errata). MR 0274300
- Oystein Ore, On a special class of polynomials, Trans. Amer. Math. Soc. 35 (1933), no. 3, 559–584. MR 1501703, DOI 10.1090/S0002-9947-1933-1501703-0
- Ronald C. Read, The use of $S$-functions in combinatorial analysis, Canadian J. Math. 20 (1968), 808–841. MR 229534, DOI 10.4153/CJM-1968-080-x
- John Riordan, An introduction to combinatorial analysis, Wiley Publications in Mathematical Statistics, John Wiley & Sons, Inc., New York; Chapman & Hall, Ltd., London, 1958. MR 0096594
- Gian-Carlo Rota, D. Kahaner, and A. Odlyzko, On the foundations of combinatorial theory. VIII. Finite operator calculus, J. Math. Anal. Appl. 42 (1973), 684–760. MR 345826, DOI 10.1016/0022-247X(73)90172-8
- Richard P. Stanley, Ordered structures and partitions, Memoirs of the American Mathematical Society, No. 119, American Mathematical Society, Providence, R.I., 1972. MR 0332509
- Richard P. Stanley, Theory and application of plane partitions. I, II, Studies in Appl. Math. 50 (1971), 167–188; ibid. 50 (1971), 259–279. MR 325407, DOI 10.1002/sapm1971503259
- Richard P. Stanley, A Brylawski decomposition for finite ordered sets, Discrete Math. 4 (1973), 77–82. MR 309813, DOI 10.1016/0012-365X(73)90117-9
- Peter Doubilet, Gian-Carlo Rota, and Richard Stanley, On the foundations of combinatorial theory. VI. The idea of generating function, Proceedings of the Sixth Berkeley Symposium on Mathematical Statistics and Probability (Univ. California, Berkeley, Calif., 1970/1971) Univ. California Press, Berkeley, Calif., 1972, pp. 267–318. MR 0403987
Bibliographic Information
- © Copyright 1975 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 202 (1975), 1-39
- MSC: Primary 05A15
- DOI: https://doi.org/10.1090/S0002-9947-1975-0357133-8
- MathSciNet review: 0357133