Results on measures of irreducibility and full indecomposability
HTML articles powered by AMS MathViewer
- by D. J. Hartfiel
- Trans. Amer. Math. Soc. 202 (1975), 357-368
- DOI: https://doi.org/10.1090/S0002-9947-1975-0364303-1
- PDF | Request permission
Abstract:
This paper develops a notion of $k$th measure of irreducibility and $k$th measure of full indecomposability. The combinatorial properties of these notions, as well as relationships between these notions, are explored. The results are then used in converting results on positive matrices into results on nonnegative matrices.References
- Richard Bellman, On a quasi-linear equation, Canadian J. Math. 8 (1956), 198–202. MR 77782, DOI 10.4153/CJM-1956-023-8
- Richard A. Brualdi and Hazel Perfect, Extension of partial diagonals of matrices. I, Monatsh. Math. 75 (1971), 385–397. MR 309966, DOI 10.1007/BF01297007
- Richard A. Brualdi, Seymour V. Parter, and Hans Schneider, The diagonal equivalence of a nonnegative matrix to a stochastic matrix, J. Math. Anal. Appl. 16 (1966), 31–50. MR 206019, DOI 10.1016/0022-247X(66)90184-3
- D. J. Hartfiel, A simplified form for nearly reducible and nearly decomposable matrices, Proc. Amer. Math. Soc. 24 (1970), 388–393. MR 252415, DOI 10.1090/S0002-9939-1970-0252415-3
- D. J. Hartfiel, Bounds for eigenvalues and eigenvectors of a nonnegative matrix which involve a measure of irreducibility, SIAM J. Appl. Math. 24 (1973), 6–8. MR 325648, DOI 10.1137/0124002
- D. J. Hartfiel, On infinite products of nonnegative matrices, SIAM J. Appl. Math. 26 (1974), 297–301. MR 352144, DOI 10.1137/0126026
- M. Lewin, On nonnegative matrices, Pacific J. Math. 36 (1971), 753–759. MR 285554, DOI 10.2140/pjm.1971.36.753
- M. Stuart Lynn and William P. Timlake, Bounds for Perron eigenvectors and subdominant eigenvalues of positive matrices, Linear Algebra Appl. 2 (1969), 143–152. MR 240123, DOI 10.1016/0024-3795(69)90023-8
- Marvin Marcus and Henryk Minc, A survey of matrix theory and matrix inequalities, Allyn and Bacon, Inc., Boston, Mass., 1964. MR 0162808
- Henryk Minc, On the maximal eigenvector of a positive matrix, SIAM J. Numer. Anal. 7 (1970), 424–427. MR 266414, DOI 10.1137/0707035 A. M. Ostrowski, On the eigenvector belonging to the maximal root of a nonnegative matrix, Rep. 145, Mathematics Research Center, U. S. Army, Madison, Wisconsin, 1960.
- Richard Sinkhorn and Paul Knopp, Problems involving diagonal products in nonnegative matrices, Trans. Amer. Math. Soc. 136 (1969), 67–75. MR 233830, DOI 10.1090/S0002-9947-1969-0233830-7
Bibliographic Information
- © Copyright 1975 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 202 (1975), 357-368
- MSC: Primary 15A48
- DOI: https://doi.org/10.1090/S0002-9947-1975-0364303-1
- MathSciNet review: 0364303