$H$-closed extensions. II
HTML articles powered by AMS MathViewer
- by Jack R. Porter and Charles Votaw
- Trans. Amer. Math. Soc. 202 (1975), 193-209
- DOI: https://doi.org/10.1090/S0002-9947-1975-0365493-7
- PDF | Request permission
Abstract:
The internal structure and external properties (in terms of other $H$-closed extensions) of the Fomin extension $\sigma X$ of a Hausdorff space $X$ are investigated. The relationship between $\sigma X$ and the Stone-Čech compactification of the absolute of $X$ is developed and used to prove that a $\sigma X$-closed subset of $\sigma X\backslash X$ is compact and to show the existence of a Tychonoff space $Y$ such that $\sigma X\backslash X$ is homeomorphic to $\beta Y\backslash Y$. The sequential closure of $X$ in $\sigma X$ is shown to be $X$. It is known that $\sigma X$ is not necessarily projectively larger than any other strict $H$-closed extension of $X$; a necessary and sufficient condition is developed to determine when a $H$-closed extension of $X$ is projectively smaller then $\sigma X$. A theorem by Magill is extended by showing that the sets of $\theta$-isomorphism classes of $H$-closed extensions of locally $H$-closed spaces $X$ and $Z$ are lattice isomorphic if and only if $\sigma X\backslash X$ and $\sigma Z\backslash Z$ are homeomorphic. Harris has characterized those simple Hausdorff extensions of $X$ which are subextensions of the Katětov extension. Characterizations of Hausdorff (not necessarily simple) extensions of $X$ which are subextensions of $H$-closed extensions $\theta$-isomorphic and $S$-equivalent to the Katětov extension are presented.References
- Bernhard Banaschewski, Über Hausdorffsch-minimale Erweiterung von Räumen, Arch. Math. 12 (1961), 355–365 (German). MR 142097, DOI 10.1007/BF01650574
- M. P. Berri, J. R. Porter, and R. M. Stephenson Jr., A survey of minimal topological spaces, General Topology and its Relations to Modern Analysis and Algebra, III (Proc. Conf., Kanpur, 1968) Academia, Prague, 1971, pp. 93–114. MR 0278254
- Jürgen Flachsmeyer, Zur Theorie der $H$-abgeschlossenen Erweiterungen, Math. Z. 94 (1966), 349–381 (German). MR 216466, DOI 10.1007/BF01111666
- Jürgen Flachsmeyer, Über Erweiterungen mit nulldimensional gelegenem Adjunkt, Contributions to Extension Theory of Topological Structures (Proc. Sympos., Berlin, 1967) Deutscher Verlag Wissensch., Berlin, 1969, pp. 63–72 (German). MR 0248751
- S. Fomin, Extensions of topological spaces, Ann. of Math. (2) 44 (1943), 471–480. MR 8686, DOI 10.2307/1968976
- Leonard Gillman and Meyer Jerison, Rings of continuous functions, The University Series in Higher Mathematics, D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto-London-New York, 1960. MR 0116199, DOI 10.1007/978-1-4615-7819-2
- Douglas Harris, Katětov extension as a functor, Math. Ann. 193 (1971), 171–175. MR 298626, DOI 10.1007/BF02052387
- S. Iliadis and S. Fomin, The method of concentric systems in the theory of topological spaces, Uspehi Mat. Nauk 21 (1966), no. 4 (130), 47–76 (Russian). MR 0203677
- Miroslav Katětov, A note on semiregular and nearly regular spaces, Časopis Pěst. Mat. Fys. 72 (1947), 97–99 (English, with Czech summary). MR 0024610, DOI 10.21136/CPMF.1947.121551
- Miroslav Katětov, On the equivalence of certain types of extension of topological spaces, Časopis Pěst. Mat. Fys. 72 (1947), 101–106 (English, with Czech summary). MR 0024611, DOI 10.21136/CPMF.1947.121555
- Chen-tung Liu, Absolutely closed spaces, Trans. Amer. Math. Soc. 130 (1968), 86–104. MR 219024, DOI 10.1090/S0002-9947-1968-0219024-9
- Kenneth D. Magill Jr., The lattice of compactifications of a locally compact space, Proc. London Math. Soc. (3) 18 (1968), 231–244. MR 229209, DOI 10.1112/plms/s3-18.2.231
- Filip Obreanu, Espaces localement absolument fermés, An. Acad. Repub. Pop. Române. Secţ. Şti. Mat. Fiz. Chim. Ser. A. 3 (1950), 375–394 (Romanian, with Russian and French summaries). MR 0044825
- I. I. Parovičenko, The suprema of families of $H$-closed extensions of Hausdorff spaces. , Dokl. Akad. Nauk SSSR 193 (1970), 1241–1244 (Russian). MR 0268855
- Jack Porter, On locally $H$-closed spaces, Proc. London Math. Soc. (3) 20 (1970), 193–204. MR 256354, DOI 10.1112/plms/s3-20.2.193
- Jack Porter and John Thomas, On $H$-closed and minimal Hausdorff spaces, Trans. Amer. Math. Soc. 138 (1969), 159–170. MR 238268, DOI 10.1090/S0002-9947-1969-0238268-4
- Jack R. Porter and Charles Votaw, $H$-closed extensions. I, General Topology and Appl. 3 (1973), 211–224. MR 326659, DOI 10.1016/0016-660X(72)90013-X
- N. A. Shanin, On special extensions of topological spaces, C. R. (Doklady) Acad. Sci. URSS (N.S.) 38 (1943), 6–9. MR 0008687
- N. A. Shanin, On separation in topological spaces, C. R. (Doklady) Acad. Sci. URSS (N.S.) 38 (1943), 110–113. MR 0008688
- M. H. Stone, Applications of the theory of Boolean rings to general topology, Trans. Amer. Math. Soc. 41 (1937), no. 3, 375–481. MR 1501905, DOI 10.1090/S0002-9947-1937-1501905-7 V C. Votaw, $H$-closed extensions as para-uniform completions, Ph.D. Dissertation, University of Kansas, Lawrence, Kan., 1971.
- Albert Wilansky, Topology for analysis, Ginn (A Xerox company), Waltham, Mass.-Toronto, Ont.-London, 1970. MR 0451181
- Stephen Willard, General topology, Addison-Wesley Publishing Co., Reading, Mass.-London-Don Mills, Ont., 1970. MR 0264581
Bibliographic Information
- © Copyright 1975 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 202 (1975), 193-209
- MSC: Primary 54D35
- DOI: https://doi.org/10.1090/S0002-9947-1975-0365493-7
- MathSciNet review: 0365493