On symmetrically distributed random measures
HTML articles powered by AMS MathViewer
- by Olav Kallenberg
- Trans. Amer. Math. Soc. 202 (1975), 105-121
- DOI: https://doi.org/10.1090/S0002-9947-1975-0370751-6
- PDF | Request permission
Abstract:
A random measure $\xi$ defined on some measurable space $(S,\mathcal {S})$ is said to be symmetrically distributed with respect to some fixed measure $\omega$ on $S$, if the distribution of $(\xi {A_1}, \cdots ,\xi {A_k})$ for $k \in N$ and disjoint ${A_1}, \cdots ,{A_k} \in \mathcal {S}$ only depends on $(\omega {A_1}, \cdots ,\omega {A_k})$. The first purpose of the present paper is to extend to such random measures (and then even improve) the results on convergence in distribution and almost surely, previously given for random processes on the line with interchangeable increments, and further to give a new proof of the basic canonical representation. The second purpose is to extend a well-known theorem of Slivnyak by proving that the symmetrically distributed random measures may be characterized by a simple invariance property of the corresponding Palm distributions.References
- A. Benczur, On sequences of equivalent events and the compound Poisson process, Studia Sci. Math. Hungar. 3 (1968), 451–458. MR 243584
- Patrick Billingsley, Convergence of probability measures, John Wiley & Sons, Inc., New York-London-Sydney, 1968. MR 0233396
- Jan Hagberg, Approximation of the summation process obtained by sampling from a finite population, Teor. Verojatnost. i Primenen. 18 (1973), 790–803 (English, with Russian summary). MR 0328985
- Peter Jagers, On Palm probabilities, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 26 (1973), 17–32. MR 339330, DOI 10.1007/BF00533957
- Olav Kallenberg, Characterization and convergence of random measures and point processes, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 27 (1973), 9–21. MR 431374, DOI 10.1007/BF00736004
- Olav Kallenberg, A canonical representation of symmetrically distributed random measures, Mathematics and statistics (in honour of Harald Bergström on the occasion of his 65th birthday), Dept. of Math., Chalmers Inst. Tech., Göteborg, 1973, pp. 41–48. MR 0372999
- Olav Kallenberg, Canonical representations and convergence criteria for processes with interchangeable increments, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 27 (1973), 23–36. MR 394842, DOI 10.1007/BF00736005
- Olav Kallenberg, Path properties of processes with independent and interchangeable increments, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 28 (1973/74), 257–271. MR 402901, DOI 10.1007/BF00532944
- Günter Kummer and Klaus Matthes, Verallgemeinerung eines Satzes von Sliwnjak. II, Rev. Roumaine Math. Pures Appl. 15 (1970), 845–870 (German). MR 270416 F. Papangelou, The Ambrose-Kakutani theorem and the Poisson process, Contributions to Ergodic Theory and Probability, Springer-Verlag, Berlin and New York, 1970, pp. 234-240.
- Sidney C. Port and Charles J. Stone, Infinite particle systems, Trans. Amer. Math. Soc. 178 (1973), 307–340. MR 326868, DOI 10.1090/S0002-9947-1973-0326868-3 B. Rosén, Limit theorems for sampling from a finite population, Ark. Mat. 5 (1964), 383-424. MR 31 #1700.
- I. M. Slivnjak, Some properties of stationary streams of homogeneous random events, Teor. Verojatnost. i Primenen. 7 (1962), 347–352 (Russian, with English summary). MR 0150846
Bibliographic Information
- © Copyright 1975 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 202 (1975), 105-121
- MSC: Primary 60G55
- DOI: https://doi.org/10.1090/S0002-9947-1975-0370751-6
- MathSciNet review: 0370751