Primitive ideals of twisted group algebras
HTML articles powered by AMS MathViewer
- by Otha L. Britton
- Trans. Amer. Math. Soc. 202 (1975), 221-241
- DOI: https://doi.org/10.1090/S0002-9947-1975-0374815-2
- PDF | Request permission
Abstract:
E. Effros and F. Hahn have conjectured that if $(G,Z)$ is a second countable locally compact transformation group, with $G$ amenable, then every primitive ideal of the associated ${C^\ast }$-algebra arises as the kernel of an irreducible representation induced from a stability subgroup. Results of Effros and Hahn concerning this conjecture are extended to include the twisted group algebra ${L^1}(G,A;T,\alpha )$, where $A$ is a separable type I ${C^\ast }$-algebra.References
- O. L. Britton, Dual spaces and primitive ideal spaces of twisted group algebras, Doctoral Dissertation, Drexel University, Philadelphia, Pa., 1972.
- Robert C. Busby, Double centralizers and extensions of $C^{\ast }$-algebras, Trans. Amer. Math. Soc. 132 (1968), 79–99. MR 225175, DOI 10.1090/S0002-9947-1968-0225175-5
- Robert C. Busby, On a theorem of Fell, Proc. Amer. Math. Soc. 30 (1971), 133–140. MR 283583, DOI 10.1090/S0002-9939-1971-0283583-6
- Robert C. Busby and Harvey A. Smith, Representations of twisted group algebras, Trans. Amer. Math. Soc. 149 (1970), 503–537. MR 264418, DOI 10.1090/S0002-9947-1970-0264418-8
- Jacques Dixmier, Les $C^{\ast }$-algèbres et leurs représentations, Cahiers Scientifiques, Fasc. XXIX, Gauthier-Villars & Cie, Éditeur-Imprimeur, Paris, 1964 (French). MR 0171173
- Edward G. Effros and Frank Hahn, Locally compact transformation groups and $C^{\ast }$- algebras, Memoirs of the American Mathematical Society, No. 75, American Mathematical Society, Providence, R.I., 1967. MR 0227310
- Elliot C. Gootman, Primitive ideals of $C^{\ast }$-algebras associated with transformation groups, Trans. Amer. Math. Soc. 170 (1972), 97–108. MR 302818, DOI 10.1090/S0002-9947-1972-0302818-X
- Einar Hille and Ralph S. Phillips, Functional analysis and semi-groups, American Mathematical Society Colloquium Publications, Vol. 31, American Mathematical Society, Providence, R.I., 1957. rev. ed. MR 0089373
- B. E. Johnson, An introduction to the theory of centralizers, Proc. London Math. Soc. (3) 14 (1964), 299–320. MR 159233, DOI 10.1112/plms/s3-14.2.299 H. Leptin, Darstellungen Verallgemeinerte ${L^1}$-Algebren. II (to appear). —, Verallgemeinerte ${L^1}$-Algebren, Math. Ann. 159 (1965), 51-76. MR 39 #1909. —, Verallgemeinerte ${L^1}$-Algebren and projektive Darstellungen lokal kompakter Gruppen. I, Invent. Math. 3 (1967), 257-281. MR 37 #5328.
- H. Leptin, Verallgemeinerte $L^{1}$-Algebren und projektive Darstellungen lokal kompakter Gruppen. I, II, Invent. Math. 3 (1967), 257–281; ibid. 4 (1967), 68–86 (German). MR 229754, DOI 10.1007/BF01402952
- George W. Mackey, Induced representations of locally compact groups. I, Ann. of Math. (2) 55 (1952), 101–139. MR 44536, DOI 10.2307/1969423
- George W. Mackey, Unitary representations of group extensions. I, Acta Math. 99 (1958), 265–311. MR 98328, DOI 10.1007/BF02392428
- M. A. Naĭmark, Normed rings, Reprinting of the revised English edition, Wolters-Noordhoff Publishing, Groningen, 1970. Translated from the first Russian edition by Leo F. Boron. MR 0355601
- Masamichi Takesaki, Covariant representations of $C^{\ast }$-algebras and their locally compact automorphism groups, Acta Math. 119 (1967), 273–303. MR 225179, DOI 10.1007/BF02392085
- Georges Zeller-Meier, Produits croisés d’une $C^{\ast }$-algèbre par un groupe d’automorphismes, C. R. Acad. Sci. Paris Sér. A-B 263 (1966), A20–A23 (French). MR 199734
Bibliographic Information
- © Copyright 1975 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 202 (1975), 221-241
- MSC: Primary 43A20
- DOI: https://doi.org/10.1090/S0002-9947-1975-0374815-2
- MathSciNet review: 0374815