Comparison theorems for bounded solutions of $\triangle u=Pu$
HTML articles powered by AMS MathViewer
- by Moses Glasner
- Trans. Amer. Math. Soc. 202 (1975), 173-179
- DOI: https://doi.org/10.1090/S0002-9947-1975-0377088-X
- PDF | Request permission
Abstract:
Let $P$ and $Q$ be ${C^1}$ densities on a hyperbolic Riemann surface $R$. A characterization of isomorphisms between the spaces of bounded solutions of $\Delta u = Pu$ and $\Delta u = Qu$ on $R$ in terms of the Wiener harmonic boundary is given.References
- Moses Glasner and Richard Katz, On the behavior of solutions of $\Delta u=Pu$ at the Royden boundary, J. Analyse Math. 22 (1969), 343β354. MR 257344, DOI 10.1007/BF02786798
- Aatos Lahtinen, On the solutions of $\Delta u=Pu$ for acceptable densities on open Riemann surfaces, Ann. Acad. Sci. Fenn. Ser. A. I. 515 (1972), 38. MR 419754
- Peter A. Loeb and Bertram Walsh, A maximal regular boundary for solutions of elliptic differential equations, Ann. Inst. Fourier (Grenoble) 18 (1968), no.Β fasc. 1, 283β308, vi. (English, with French summary). MR 243099, DOI 10.5802/aif.284
- Mitsuru Nakai, The space of bounded solutions of the equation $\Delta u=pu$ on a Riemann surface, Proc. Japan Acad. 36 (1960), 267β272. MR 121478
- Mitsuru Nakai, Dirichlet finite solutions of $\Delta u=Pu$, and classification of Riemann surfaces, Bull. Amer. Math. Soc. 77 (1971), 381β385. MR 293083, DOI 10.1090/S0002-9904-1971-12705-2
- H. L. Royden, The equation $\Delta u=Pu$, and the classification of open Riemann sufaces, Ann. Acad. Sci. Fenn. Ser. A I 271 (1959), 27. MR 0121477
- L. Sario and M. Nakai, Classification theory of Riemann surfaces, Die Grundlehren der mathematischen Wissenschaften, Band 164, Springer-Verlag, New York-Berlin, 1970. MR 0264064, DOI 10.1007/978-3-642-48269-4
Bibliographic Information
- © Copyright 1975 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 202 (1975), 173-179
- MSC: Primary 31C15; Secondary 30A48
- DOI: https://doi.org/10.1090/S0002-9947-1975-0377088-X
- MathSciNet review: 0377088