The bracket ring of a combinatorial geometry. I

Author:
Neil L. White

Journal:
Trans. Amer. Math. Soc. **202** (1975), 79-95

MSC:
Primary 05B35

DOI:
https://doi.org/10.1090/S0002-9947-1975-0387095-9

MathSciNet review:
0387095

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The bracket ring is a ring of generalized determinants, called brackets, constructed on an arbitrary combinatorial geometry $G$. The brackets satisfy several familiar properties of determinants, including the syzygies, which are equivalent to Laplace’s expansion by minors. We prove that the bracket ring is a universal coordinatization object for $G$ in two senses. First, coordinatizations of $G$ correspond to homomorphisms of the ring into fields, thus reducing the study of coordinatizations of $G$ to the determination of the prime ideal structure of the bracket ring. Second, $G$ has a coordinatization-like representation over its own bracket ring, which allows an interesting generalization of some familiar results of linear algebra, including Cramer’s rule. An alternative form of the syzygies is then derived and applied to the problem of finding a standard form for any element of the bracket ring. Finally, we prove that several important relations between geometries, namely orthogonality, subgeometry, and contraction, are directly reflected in the structure of the bracket ring.

- Henry H. Crapo and Gian-Carlo Rota,
*On the foundations of combinatorial theory: Combinatorial geometries*, Preliminary edition, The M.I.T. Press, Cambridge, Mass.-London, 1970. MR**0290980** - Curtis Greene,
*Another exchange property for bases*, Proc. Amer. Math. Soc.**46**(1974), 155–156. MR**345850**, DOI https://doi.org/10.1090/S0002-9939-1974-0345850-X - W. V. D. Hodge and D. Pedoe,
*Methods of algebraic geometry. Vol. I*, Cambridge Mathematical Library, Cambridge University Press, Cambridge, 1994. Book I: Algebraic preliminaries; Book II: Projective space; Reprint of the 1947 original. MR**1288305** - S. L. Kleiman and Dan Laksov,
*Schubert calculus*, Amer. Math. Monthly**79**(1972), 1061–1082. MR**323796**, DOI https://doi.org/10.2307/2317421 - Dean Lucas,
*Properties of rank preserving weak maps*, Bull. Amer. Math. Soc.**80**(1974), 127–131. MR**337665**, DOI https://doi.org/10.1090/S0002-9904-1974-13386-0 - L. Mirsky,
*Transversal theory. An account of some aspects of combinatorial mathematics*, Mathematics in Science and Engineering, Vol. 75, Academic Press, New York-London, 1971. MR**0282853** - Gian-Carlo Rota,
*On the foundations of combinatorial theory. I. Theory of Möbius functions*, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete**2**(1964), 340–368 (1964). MR**174487**, DOI https://doi.org/10.1007/BF00531932 - Gian-Carlo Rota,
*Combinatorial theory, old and new*, Actes du Congrès International des Mathématiciens (Nice, 1970) Gauthier-Villars, Paris, 1971, pp. 229–233. MR**0505646**
H. Turnbull, - W. T. Tutte,
*A homotopy theorem for matroids. I, II*, Trans. Amer. Math. Soc.**88**(1958), 144–174. MR**101526**, DOI https://doi.org/10.1090/S0002-9947-1958-0101526-0 - P. Vámos,
*A necessary and sufficient condition for a matroid to be linear*, Möbius algebras (Proc. Conf., Univ. Waterloo, Waterloo, Ont., 1971), Univ. Waterloo, Waterloo, Ont., 1971, pp. 162–169. MR**0349447** - B. L. van der Waerden,
*Über die fundamentalen Identitäten der Invariantentheorie*, Math. Ann.**95**(1926), no. 1, 706–735 (German). MR**1512301**, DOI https://doi.org/10.1007/BF01206634
N. L. White, - Walter Whiteley,
*Logic and invariant theory. IV. Invariants and syzygies in combinatorial geometry*, J. Combin. Theory Ser. B**26**(1979), no. 2, 251–267. MR**532592**, DOI https://doi.org/10.1016/0095-8956%2879%2990061-3
A. Young, - Oscar Zariski and Pierre Samuel,
*Commutative algebra, Volume I*, The University Series in Higher Mathematics, D. Van Nostrand Company, Inc., Princeton, New Jersey, 1958. With the cooperation of I. S. Cohen. MR**0090581**

*The theory of determinants, matrices, and invariants*, Blackie and Son, London, 1928.

*The bracket ring and combinatorial geometry*, Thesis, Harvard University, Cambridge, Mass., 1971. ---,

*The bracket ring of a combinatorial geometry*. II:

*Unimodular geometries*(to appear).

*On quantitative substitutional analysis*, Proc. London Math. Soc. (2)

**28**(1928), 255-292.

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC:
05B35

Retrieve articles in all journals with MSC: 05B35

Additional Information

Keywords:
Combinatorial pregeometry,
matroid,
bracket ring,
syzygy,
determinant,
coordinatization,
prime ideal,
van der Waerden relation,
standard product,
transversal geometry,
orthogonal geometry,
minor

Article copyright:
© Copyright 1975
American Mathematical Society