Modular constructions for combinatorial geometries

Author:
Tom Brylawski

Journal:
Trans. Amer. Math. Soc. **203** (1975), 1-44

MSC:
Primary 05B35

DOI:
https://doi.org/10.1090/S0002-9947-1975-0357163-6

MathSciNet review:
0357163

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: R. Stanley, in an investigation of modular flats in geometries (Algebra Universalis 1-2 (1971), 214-217), proved that the characteristic polynomial of a modular flat divides the characteristic polynomial of a geometry . In this paper we identify the quotient: THEOREM. *If is a modular flat of , where is the complete Brown truncation of by *. (The lattice of consists of all flats containing and all flats disjoint from , with the induced order from .) We give many characterizations of modular flats in terms of their lattice properties as well as by means of a short-circuit axiom and a modular version of the MacLane-Steinitz exchange axiom. Modular flats are shown to have many of the useful properties of points and distributive flats (separators) in addition to being much more prevalent. The theorem relating the chromatic polynomials of two graphs and the polynomial of their vertex join across a common clique generalizes to geometries: THEOREM. *Given geometries and , if is a modular flat of as well as a subgeometry of , then there exists a geometry which is a pushout in the category of injective strong maps and such that *. The closed set structure, rank function, independent sets, and lattice properties of are characterized. After proving a modular extension theorem we give applications of our results to Crapo's single element extension theorem, Crapo's join operation, chain groups, unimodular geometries, transversal geometries, and graphs.

**[1]**Garrett Birkhoff,*Lattice theory*, Third edition. American Mathematical Society Colloquium Publications, Vol. XXV, American Mathematical Society, Providence, R.I., 1967. MR**0227053****[2]**George D. Birkhoff,*A determinant formula for the number of ways of coloring a map*, Ann. of Math. (2)**14**(1912/13), no. 1-4, 42–46. MR**1502436**, https://doi.org/10.2307/1967597**[3]**G. D. Birkhoff and D. C. Lewis,*Chromatic polynomials*, Trans. Amer. Math. Soc.**60**(1946), 355–451. MR**18401**, https://doi.org/10.1090/S0002-9947-1946-0018401-4**[4]**R. Bixby,*Composition and decomposition of matroids and related topics*, Thesis, Cornell University, Ithaca, N. Y., 1972.**[5]**Terrence Brown,*Deriving closure relations with exchange property*, Möbius algebras (Proc. Conf., Univ. Waterloo, Waterloo, Ont., 1971), Univ. Waterloo, Waterloo, Ont., 1971, pp. 51–55. Notes (and an editorial appendix) by H. Crapo and G. Roulet. MR**0357161****[6]**Thomas H. Brylawski,*A combinatorial model for series-parallel networks*, Trans. Amer. Math. Soc.**154**(1971), 1–22. MR**288039**, https://doi.org/10.1090/S0002-9947-1971-0288039-7**[7]**Thomas H. Brylawski,*A decomposition for combinatorial geometries*, Trans. Amer. Math. Soc.**171**(1972), 235–282. MR**309764**, https://doi.org/10.1090/S0002-9947-1972-0309764-6**[8]**Thomas H. Brylawski,*The Möbius function on geometric lattices as a decomposition invariant*, Möbius algebras (Proc. Conf., Univ. Waterloo, Waterloo, Ont., 1971), Univ. Waterloo, Waterloo, Ont., 1971, pp. 143–148. MR**0379245****[9]**-,*An outline for the study of combinatorial pregeometries*, Notes, University of North Carolina, Raleigh, N. C., 1972.**[10]**-,*An affine representation for transversal geometries*, Studies in Applied Mathematics (to appear).**[11]**T. Brylawski and D. Lucas,*Uniquely representable combinatorial geometries*, Proc. Internat. Colloq. on Combinatorial Theory, Rome, Italy, 1973.**[12]**Henry H. Crapo,*A higher invariant for matroids*, J. Combinatorial Theory**2**(1967), 406–417. MR**215744****[13]**Henry H. Crapo,*The joining of exchange geometries*, J. Math. Mech.**17**(1967/1968), 837–852. MR**0241317****[14]**H. H. Crapo,*Chromatic polynomials for a join of graphs*, Combinatorial theory and its applications, I (Proc. Colloq., Balatonfüred, 1969) North-Holland, Amsterdam, 1970, pp. 239–245. MR**0299524****[15]**-,*Constructions in combinatorial geometries*, Notes, Bowdoin College, Brunswick, Me., 1971.**[16]**Henry H. Crapo and Gian-Carlo Rota,*On the foundations of combinatorial theory: Combinatorial geometries*, Preliminary edition, The M.I.T. Press, Cambridge, Mass.-London, 1970. MR**0290980****[17]**William Graves,*An algebra associated to a combinatorial geometry*, Bull. Amer. Math. Soc.**77**(1971), 757–761. MR**286688**, https://doi.org/10.1090/S0002-9904-1971-12797-0**[18]**Curtis Greene,*A rank inequality for finite geometric lattices*, J. Combinatorial Theory**9**(1970), 357–364. MR**266824****[19]**Curtis Greene,*On the Möbius algebra of a partially ordered set*, Möbius algebras (Proc. Conf., Univ. Waterloo, Waterloo, Ont., 1971), Univ. Waterloo, Waterloo, Ont., 1971, pp. 3–38. With two appendices by Henry Crapo and a reprint of an article by Louis Solomon. MR**0349501****[20]**Gian-Carlo Rota,*On the foundations of combinatorial theory. I. Theory of Möbius functions*, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete**2**(1964), 340–368 (1964). MR**174487**, https://doi.org/10.1007/BF00531932**[21]**J. Sonner,*The language of arrows*(to appear).**[22]**Richard P. Stanley,*Modular elements of geometric lattices*, Algebra Universalis**1**(1971/72), 214–217. MR**295976**, https://doi.org/10.1007/BF02944981**[23]**Richard P. Stanley,*Supersolvable semimodular lattices*, Möbius algebras (Proc. Conf., Univ. Waterloo, Waterloo, Ont., 1971), Univ. Waterloo, Waterloo, Ont., 1971, pp. 80–142. MR**0354472****[24]**W. T. Tutte,*Lectures on matroids*, J. Res. Nat. Bur. Standards Sect. B**69B**(1965), 1–47. MR**0179781****[25]**Hassler Whitney,*2-Isomorphic Graphs*, Amer. J. Math.**55**(1933), no. 1-4, 245–254. MR**1506961**, https://doi.org/10.2307/2371127**[26]**L. R. Wilcox,*Modularity in the theory of lattices*, Ann. of Math. (2)**40**(1939), no. 2, 490–505. MR**1503473**, https://doi.org/10.2307/1968934**[27]**Thomas A. Dowling and Richard M. Wilson,*Whitney number inequalities for geometric lattices*, Proc. Amer. Math. Soc.**47**(1975), 504–512. MR**354422**, https://doi.org/10.1090/S0002-9939-1975-0354422-3

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC:
05B35

Retrieve articles in all journals with MSC: 05B35

Additional Information

DOI:
https://doi.org/10.1090/S0002-9947-1975-0357163-6

Article copyright:
© Copyright 1975
American Mathematical Society