Sequential convergence in the order duals of certain classes of Riesz spaces
HTML articles powered by AMS MathViewer
- by P. G. Dodds
- Trans. Amer. Math. Soc. 203 (1975), 391-403
- DOI: https://doi.org/10.1090/S0002-9947-1975-0358282-0
- PDF | Request permission
Abstract:
Several results of Hahn-Vitali-Saks type are given for sequences in the order dual of an Archimedean Riesz space with separating order dual. The class of Riesz spaces considered contains those which are Dedekind $\sigma$-complete, or have the projection property or have an interpolation property introduced by G. L. Seever. The results depend on recent work of O. Burkinshaw and some results of uniform boundedness type.References
- Ichiro Amemiya, On a topological method in semi-ordered linear spaces, Proc. Japan Acad. 27 (1951), 138–140. MR 48717
- Ichiro Amemiya, On ordered topological linear spaces, Proc. Internat. Sympos. Linear Spaces (Jerusalem, 1960) Jerusalem Academic Press, Jerusalem; Pergamon, Oxford, 1961, pp. 14–23. MR 0138971
- Tsuyoshi Andô, Convergent sequences of finitely additive measures, Pacific J. Math. 11 (1961), 395–404. MR 137806, DOI 10.2140/pjm.1961.11.395 O. Burkinshaw, Weak compactness in the order dual of an Archimedean Riesz space, Thesis, Purdue University, Lafayette, Ind., 1972.
- Mahlon M. Day, Normed linear spaces, Reihe: Reelle Funktionen, Springer-Verlag, Berlin-Göttingen-Heidelberg, 1958. MR 0094675
- D. H. Fremlin, Topological Riesz spaces and measure theory, Cambridge University Press, London-New York, 1974. MR 0454575, DOI 10.1017/CBO9780511897207
- Leonard Gillman and Meyer Jerison, Rings of continuous functions, The University Series in Higher Mathematics, D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto-London-New York, 1960. MR 0116199, DOI 10.1007/978-1-4615-7819-2
- A. Grothendieck, Sur les applications linéaires faiblement compactes d’espaces du type $C(K)$, Canad. J. Math. 5 (1953), 129–173 (French). MR 58866, DOI 10.4153/cjm-1953-017-4
- Samuel Kaplan, On weak compactness in the space of Radon measures, J. Functional Analysis 5 (1970), 259–298. MR 0261317, DOI 10.1016/0022-1236(70)90030-3
- W. A. J. Luxemburg and A. C. Zaanen, Notes on Banach function spaces. VI, VII, Nederl. Akad. Wetensch. Proc. Ser. A 66 = Indag. Math. 25 (1963), 655–668; 669–681. MR 0162124, DOI 10.1016/S1385-7258(63)50066-3 —, Riesz spaces. Vol. I, North-Holland, Amsterdam, 1971.
- L. C. Moore Jr. and James C. Reber, Mackey topologies which are locally convex Riesz topologies, Duke Math. J. 39 (1972), 105–119. MR 295045 O. Nikodym, Sur les familles bornées de fonctions parfaitement additives d’ensemble abstrait, C. R. Acad. Sci. Paris 192 (1931), 727-728.
- Stanislaw Saks, On some functionals, Trans. Amer. Math. Soc. 35 (1933), no. 2, 549–556. MR 1501701, DOI 10.1090/S0002-9947-1933-1501701-7
- G. L. Seever, Measures on $F$-spaces, Trans. Amer. Math. Soc. 133 (1968), 267–280. MR 226386, DOI 10.1090/S0002-9947-1968-0226386-5
- Benjamin B. Wells Jr., Weak compactness of measures, Proc. Amer. Math. Soc. 20 (1969), 124–130. MR 238067, DOI 10.1090/S0002-9939-1969-0238067-9
- Adriaan Cornelis Zaanen, Integration, North-Holland Publishing Co., Amsterdam; Interscience Publishers John Wiley & Sons, Inc., New York, 1967. Completely revised edition of An introduction to the theory of integration. MR 0222234
Bibliographic Information
- © Copyright 1975 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 203 (1975), 391-403
- MSC: Primary 46A40
- DOI: https://doi.org/10.1090/S0002-9947-1975-0358282-0
- MathSciNet review: 0358282