On the dimension of varieties of special divisors
HTML articles powered by AMS MathViewer
- by R. F. Lax
- Trans. Amer. Math. Soc. 203 (1975), 141-159
- DOI: https://doi.org/10.1090/S0002-9947-1975-0360602-8
- PDF | Request permission
Abstract:
Let ${T_g}$ denote the Teichmüller space and let $V$ denote the universal family of Teichmüller surfaces of genus $g$ Let $V_{{T_g}}^{(n)}$ denote the $n$th symmetric product of $V$ over ${T_g}$ and let $J$ denote the family of Jacobians over ${T_g}$. Let $f:V_{{T_g}}^{(n)} \to \text {J}$ be the natural relativization over ${T_g}$ of the classical map defined by integrating holomorphic differentials. Let \[ u:{f^\ast }\Omega _{\text {J} /{T_g}}^1 \to \Omega _{V_{{T_g}/{T_g}}^{(n)}}^1\] be the map induced by $f$. We define $G_n^r$ to be the analytic subspace of $V_{{T_g}}^{(n)}$ defined by the vanishing of ${ \wedge ^{n - r + 1}}u$. Put $\tau = (r + 1)(n - r) - rg$. We show that $G_n^1 - G_n^2$, if nonempty, is smooth of pure dimension $3g - 3 + \tau + 1$. From this result, we may conclude that, for a generic curve $X$, the fiber of $G_n^1 - G_n^2$ over the module point of $X$, if nonempty, is smooth of pure dimension $\tau + 1$, a classical assertion. Variational formulas due to Schiffer and Spencer and Rauch are employed in the study of $G_n^r$.References
- Aldo Andreotti, On a theorem of Torelli, Amer. J. Math. 80 (1958), 801–828. MR 102518, DOI 10.2307/2372835
- A. Andreotti and A. L. Mayer, On period relations for abelian integrals on algebraic curves, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (3) 21 (1967), 189–238. MR 220740 A. Brill and M. Noether, Über die algebraischen Funktionen und ihre Anwendung in der Geometrie, Math. Ann. 7 (1874).
- Hershel M. Farkas, Special divisors and analytic subloci of Teichmueller space, Amer. J. Math. 88 (1966), 881–901. MR 213546, DOI 10.2307/2373086
- Hans Grauert, Ein Theorem der analytischen Garbentheorie und die Modulräume komplexer Strukturen, Inst. Hautes Études Sci. Publ. Math. 5 (1960), 64 (German). MR 121814 A. Grothendieck, Exposés in Séminaire Cartan, 1960/61, Secrétariat mathématique, Paris.
- R. C. Gunning, Lectures on Riemann surfaces, Jacobi varieties, Mathematical Notes, No. 12, Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1972. MR 0357407
- Birger Iversen, Linear determinants with applications to the Picard scheme of a family of algebraic curves, Lecture Notes in Mathematics, Vol. 174, Springer-Verlag, Berlin-New York, 1970. MR 0292835, DOI 10.1007/BFb0069474 G. Kempf, Schubert methods with an application to algebraic curves, Stichting Mathematisch Centrum, Amsterdam, 1971.
- G. Kempf and D. Laksov, The determinantal formula of Schubert calculus, Acta Math. 132 (1974), 153–162. MR 338006, DOI 10.1007/BF02392111
- Steven L. Kleiman and Dan Laksov, On the existence of special divisors, Amer. J. Math. 94 (1972), 431–436. MR 323792, DOI 10.2307/2374630
- Steven L. Kleiman and Dan Laksov, Another proof of the existence of special divisors, Acta Math. 132 (1974), 163–176. MR 357398, DOI 10.1007/BF02392112
- Henrik H. Martens, On the varieties of special divisors on a curve, J. Reine Angew. Math. 227 (1967), 111–120. MR 215847, DOI 10.1515/crll.1967.227.111
- Henrik H. Martens, Varieties of special divisors on a curve. II, J. Reine Angew. Math. 233 (1968), 89–100. MR 241420, DOI 10.1515/crll.1968.233.89
- A. Mattuck and A. Mayer, The Riemann-Roch theorem for algebraic curves, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (3) 17 (1963), 223–237. MR 162798
- Alan Mayer, Rauch’s variational formula and the heat equation, Math. Ann. 181 (1969), 53–59. MR 248336, DOI 10.1007/BF01351178
- Theodor Meis, Die minimale Blätterzahl der Konkretisierungen einer kompakten Riemannschen Fläche, Schr. Math. Inst. Univ. Münster 16 (1960), 61 (German). MR 147643
- Charles Patt, Variations of Teichmueller and Torelli surfaces, J. Analyse Math. 11 (1963), 221–247. MR 160894, DOI 10.1007/BF02789986
- H. E. Rauch, Weierstrass points, branch points, and moduli of Riemann surfaces, Comm. Pure Appl. Math. 12 (1959), 543–560. MR 110798, DOI 10.1002/cpa.3160120310
- Menahem Schiffer and Donald C. Spencer, Functionals of finite Riemann surfaces, Princeton University Press, Princeton, N. J., 1954. MR 0065652
- Beniamino Segre, Sui moduli delle curve poligonali, e sopra un complemento al teorema di esistenza di Reimann, Math. Ann. 100 (1928), no. 1, 537–551 (Italian). MR 1512501, DOI 10.1007/BF01448862 F. Severi and E. Löffler, Vorlesungen über algebraischen Geometrie, Teubner, Leipzig, 1921. —, Sul teorema di esistenza di Riemann, Rend. Circ. Mat. Palermo 46 (1922).
- George Springer, Introduction to Riemann surfaces, Addison-Wesley Publishing Co., Inc., Reading, Mass., 1957. MR 0092855
Bibliographic Information
- © Copyright 1975 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 203 (1975), 141-159
- MSC: Primary 14H15; Secondary 14C20, 30A46, 32G15
- DOI: https://doi.org/10.1090/S0002-9947-1975-0360602-8
- MathSciNet review: 0360602