## Right orders in full linear rings

HTML articles powered by AMS MathViewer

- by K. C. O’Meara
- Trans. Amer. Math. Soc.
**203**(1975), 299-318 - DOI: https://doi.org/10.1090/S0002-9947-1975-0360663-6
- PDF | Request permission

## Abstract:

In this paper a right order $R$ in an infinite dimensional full linear ring is characterized as a ring satisfying: (1) $R$ is meet-irreducible (with zero right singular ideal) and contains uniform right ideals; (2) the closed right ideals of $R$ are right annihilator ideals, and each such right ideal is essentially finitely generated; (3) $R$ possesses a reducing pair (i.e. a pair $({\beta _1},{\beta _2})$ of elements for which ${\beta _1}R,{\beta _2}R$ and $\beta _1^r + \beta _2^r$ are large right ideals of $R$); (4) for each $a \in R$ with ${a^l} = 0,aR$ contains a regular element of $R$. A second characterization of $R$ is also given. This is in terms of the right annihilator ideals of $R$ which have the same (uniform) dimension as ${R_R}$. The problem of characterizing right orders in (infinite dimensional) full linear rings was posed by Carl Faith. The Goldie theorems settled the finite dimensional case.## References

- Vasily C. Cateforis,
*Flat regular quotient rings*, Trans. Amer. Math. Soc.**138**(1969), 241–249. MR**238899**, DOI 10.1090/S0002-9947-1969-0238899-1 - Vasily C. Cateforis,
*On regular self-injective rings*, Pacific J. Math.**30**(1969), 39–45. MR**248178**, DOI 10.2140/pjm.1969.30.39 - Carl Faith,
*Lectures on injective modules and quotient rings*, Lecture Notes in Mathematics, No. 49, Springer-Verlag, Berlin-New York, 1967. MR**0227206**, DOI 10.1007/BFb0074319 - George D. Findlay,
*Flat epimorphic extensions of rings*, Math. Z.**118**(1970), 281–288. MR**280550**, DOI 10.1007/BF01109864 - A. W. Goldie,
*Semi-prime rings with maximum condition*, Proc. London Math. Soc. (3)**10**(1960), 201–220. MR**111766**, DOI 10.1112/plms/s3-10.1.201 - John J. Hutchinson,
*Quotient full linear rings*, Proc. Amer. Math. Soc.**28**(1971), 375–378. MR**424867**, DOI 10.1090/S0002-9939-1971-0424867-8 - R. E. Johnson,
*The extended centralizer of a ring over a module*, Proc. Amer. Math. Soc.**2**(1951), 891–895. MR**45695**, DOI 10.1090/S0002-9939-1951-0045695-9 - R. E. Johnson,
*Structure theory of faithful rings. III. Irreducible rings*, Proc. Amer. Math. Soc.**11**(1960), 710–717. MR**118739**, DOI 10.1090/S0002-9939-1960-0118739-9 - R. E. Johnson,
*Quotient rings of rings with zero singular ideal*, Pacific J. Math.**11**(1961), 1385–1392. MR**143779**, DOI 10.2140/pjm.1961.11.1385 - R. E. Johnson,
*Rings of finite rank*, Publ. Math. Debrecen**11**(1964), 284–287. MR**179205**, DOI 10.5486/pmd.1964.11.1-4.30 - Joachim Lambek,
*Lectures on rings and modules*, Blaisdell Publishing Co. [Ginn and Co.], Waltham, Mass.-Toronto, Ont.-London, 1966. With an appendix by Ian G. Connell. MR**0206032** - Y ichi Miyashita,
*On quasi-injective modules. A generalization of the theory of completely reducible modules*, J. Fac. Sci. Hokkaido Univ. Ser. I**18**(1964/1965), 158–187. MR**0171817** - Kiiti Morita,
*Flat modules, injective modules and quotient rings*, Math. Z.**120**(1971), 25–40. MR**286833**, DOI 10.1007/BF01109715 - K. C. O’Meara,
*Primeness of right orders in full linear rings*, J. Algebra**26**(1973), 172–184. MR**332857**, DOI 10.1016/0021-8693(73)90018-5 - K. C. O’Meara,
*Intrinsic extensions of prime rings*, Pacific J. Math.**51**(1974), 257–269. MR**480608**, DOI 10.2140/pjm.1974.51.257 - Nicolae Popescu and Tiberiu Spircu,
*Quelques observations sur les épimorphismes plats (à gauche) d’anneaux*, J. Algebra**16**(1970), 40–59 (French). MR**265413**, DOI 10.1016/0021-8693(70)90039-6 - Nicolae Popescu and Dorian Spulber,
*Sur les quasi-ordres (à gauche) dans un anneau*, J. Algebra**17**(1971), 474–481 (French). MR**274519**, DOI 10.1016/0021-8693(71)90004-4 - L. Silver,
*Noncommutative localizations and applications*, J. Algebra**7**(1967), 44–76. MR**217114**, DOI 10.1016/0021-8693(67)90067-1 - Y. Utumi,
*On rings of which any one-sided quotient rings are two-sided*, Proc. Amer. Math. Soc.**14**(1963), 141–147. MR**142568**, DOI 10.1090/S0002-9939-1963-0142568-6

## Bibliographic Information

- © Copyright 1975 American Mathematical Society
- Journal: Trans. Amer. Math. Soc.
**203**(1975), 299-318 - MSC: Primary 16A18
- DOI: https://doi.org/10.1090/S0002-9947-1975-0360663-6
- MathSciNet review: 0360663