Right orders in full linear rings
HTML articles powered by AMS MathViewer
- by K. C. O’Meara
- Trans. Amer. Math. Soc. 203 (1975), 299-318
- DOI: https://doi.org/10.1090/S0002-9947-1975-0360663-6
- PDF | Request permission
Abstract:
In this paper a right order $R$ in an infinite dimensional full linear ring is characterized as a ring satisfying: (1) $R$ is meet-irreducible (with zero right singular ideal) and contains uniform right ideals; (2) the closed right ideals of $R$ are right annihilator ideals, and each such right ideal is essentially finitely generated; (3) $R$ possesses a reducing pair (i.e. a pair $({\beta _1},{\beta _2})$ of elements for which ${\beta _1}R,{\beta _2}R$ and $\beta _1^r + \beta _2^r$ are large right ideals of $R$); (4) for each $a \in R$ with ${a^l} = 0,aR$ contains a regular element of $R$. A second characterization of $R$ is also given. This is in terms of the right annihilator ideals of $R$ which have the same (uniform) dimension as ${R_R}$. The problem of characterizing right orders in (infinite dimensional) full linear rings was posed by Carl Faith. The Goldie theorems settled the finite dimensional case.References
- Vasily C. Cateforis, Flat regular quotient rings, Trans. Amer. Math. Soc. 138 (1969), 241–249. MR 238899, DOI 10.1090/S0002-9947-1969-0238899-1
- Vasily C. Cateforis, On regular self-injective rings, Pacific J. Math. 30 (1969), 39–45. MR 248178, DOI 10.2140/pjm.1969.30.39
- Carl Faith, Lectures on injective modules and quotient rings, Lecture Notes in Mathematics, No. 49, Springer-Verlag, Berlin-New York, 1967. MR 0227206, DOI 10.1007/BFb0074319
- George D. Findlay, Flat epimorphic extensions of rings, Math. Z. 118 (1970), 281–288. MR 280550, DOI 10.1007/BF01109864
- A. W. Goldie, Semi-prime rings with maximum condition, Proc. London Math. Soc. (3) 10 (1960), 201–220. MR 111766, DOI 10.1112/plms/s3-10.1.201
- John J. Hutchinson, Quotient full linear rings, Proc. Amer. Math. Soc. 28 (1971), 375–378. MR 424867, DOI 10.1090/S0002-9939-1971-0424867-8
- R. E. Johnson, The extended centralizer of a ring over a module, Proc. Amer. Math. Soc. 2 (1951), 891–895. MR 45695, DOI 10.1090/S0002-9939-1951-0045695-9
- R. E. Johnson, Structure theory of faithful rings. III. Irreducible rings, Proc. Amer. Math. Soc. 11 (1960), 710–717. MR 118739, DOI 10.1090/S0002-9939-1960-0118739-9
- R. E. Johnson, Quotient rings of rings with zero singular ideal, Pacific J. Math. 11 (1961), 1385–1392. MR 143779, DOI 10.2140/pjm.1961.11.1385
- R. E. Johnson, Rings of finite rank, Publ. Math. Debrecen 11 (1964), 284–287. MR 179205, DOI 10.5486/pmd.1964.11.1-4.30
- Joachim Lambek, Lectures on rings and modules, Blaisdell Publishing Co. [Ginn and Co.], Waltham, Mass.-Toronto, Ont.-London, 1966. With an appendix by Ian G. Connell. MR 0206032
- Y ichi Miyashita, On quasi-injective modules. A generalization of the theory of completely reducible modules, J. Fac. Sci. Hokkaido Univ. Ser. I 18 (1964/1965), 158–187. MR 0171817
- Kiiti Morita, Flat modules, injective modules and quotient rings, Math. Z. 120 (1971), 25–40. MR 286833, DOI 10.1007/BF01109715
- K. C. O’Meara, Primeness of right orders in full linear rings, J. Algebra 26 (1973), 172–184. MR 332857, DOI 10.1016/0021-8693(73)90018-5
- K. C. O’Meara, Intrinsic extensions of prime rings, Pacific J. Math. 51 (1974), 257–269. MR 480608, DOI 10.2140/pjm.1974.51.257
- Nicolae Popescu and Tiberiu Spircu, Quelques observations sur les épimorphismes plats (à gauche) d’anneaux, J. Algebra 16 (1970), 40–59 (French). MR 265413, DOI 10.1016/0021-8693(70)90039-6
- Nicolae Popescu and Dorian Spulber, Sur les quasi-ordres (à gauche) dans un anneau, J. Algebra 17 (1971), 474–481 (French). MR 274519, DOI 10.1016/0021-8693(71)90004-4
- L. Silver, Noncommutative localizations and applications, J. Algebra 7 (1967), 44–76. MR 217114, DOI 10.1016/0021-8693(67)90067-1
- Y. Utumi, On rings of which any one-sided quotient rings are two-sided, Proc. Amer. Math. Soc. 14 (1963), 141–147. MR 142568, DOI 10.1090/S0002-9939-1963-0142568-6
Bibliographic Information
- © Copyright 1975 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 203 (1975), 299-318
- MSC: Primary 16A18
- DOI: https://doi.org/10.1090/S0002-9947-1975-0360663-6
- MathSciNet review: 0360663