An extremal length problem on a bordered Riemann surface
HTML articles powered by AMS MathViewer
- by Jeffrey Clayton Wiener
- Trans. Amer. Math. Soc. 203 (1975), 227-245
- DOI: https://doi.org/10.1090/S0002-9947-1975-0361054-4
- PDF | Request permission
Abstract:
Partition the contours of a compact bordered Riemann surface $R’$ into four disjoint closed sets ${\alpha _0},{\alpha _1},{\alpha _2}$ and $\gamma$ with ${\alpha _0}$ and ${\alpha _1}$ nonempty. Let $F$ denote the family of all locally rectifiable $1$-chains in $R’ - \gamma$ which join ${\alpha _0}$ to ${\alpha _1}$. The extremal length problem on $R’$ considers the existence of a real-valued harmonic function $u$ on $R’$ which is 0 on ${\alpha _0},1$ on ${\alpha _1}$, a constant on each component ${\nu _k}$ of ${\alpha _2}$ with ${\smallint _{{\nu _k}}}^ \ast du = 0$ and $^ \ast du = 0$ along $\gamma$ such that the extremal length of $F$ is equal to the reciprocal of the Dirichlet integral of $u$, that is, $\lambda (F) = {D_{R’}}{(u)^{ - 1}}$. Let $\bar R$ denote a bordered Riemann surface with a finite number of boundary components and $S$ a compactification of $\bar R$ with the property that $\partial \bar R \subset S$. We consider the extremal length problem on $\bar R$ (as a subset of $S$) when ${\alpha _0},{\alpha _1}$, and ${\alpha _2}$ are relatively closed subarcs of $\partial \bar R$ and when ${\alpha _0},{\alpha _1}$ and ${\alpha _2}$ are closed subsets of $\partial S = (S - \bar R) \cup \partial \bar R$.References
- Lars V. Ahlfors, Complex analysis: An introduction of the theory of analytic functions of one complex variable, 2nd ed., McGraw-Hill Book Co., New York-Toronto-London, 1966. MR 0188405
- Lars V. Ahlfors and Leo Sario, Riemann surfaces, Princeton Mathematical Series, No. 26, Princeton University Press, Princeton, N.J., 1960. MR 0114911, DOI 10.1515/9781400874538
- James A. Jenkins, Univalent functions and conformal mapping, Reihe: Moderne Funktionentheorie, Springer-Verlag, Berlin-Göttingen-Heidelberg, 1958. MR 0096806 —, Lecture notes at Washington University, 1968-1969.
- A. Marden and B. Rodin, Extremal and conjugate extremal distance on open Riemann surfaces with applications to circular-radial slit mappings, Acta Math. 115 (1966), 237–269. MR 203003, DOI 10.1007/BF02392209
- Carl David Minda, Extremal length and harmonic functions on Riemann surfaces, Trans. Amer. Math. Soc. 171 (1972), 1–22. MR 390208, DOI 10.1090/S0002-9947-1972-0390208-3
- Zeev Nehari, Conformal mapping, McGraw-Hill Book Co., Inc., New York-Toronto-London, 1952. MR 0045823
- Burton Rodin and Leo Sario, Principal functions, D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto, Ont.-London, 1968. In collaboration with Mitsuru Nakai. MR 0229812, DOI 10.1007/978-1-4684-8038-2
- L. Sario and M. Nakai, Classification theory of Riemann surfaces, Die Grundlehren der mathematischen Wissenschaften, Band 164, Springer-Verlag, New York-Berlin, 1970. MR 0264064, DOI 10.1007/978-3-642-48269-4
- L. Sario and K. Oikawa, Capacity functions, Die Grundlehren der mathematischen Wissenschaften, Band 149, Springer-Verlag New York, Inc., New York, 1969. MR 0254232, DOI 10.1007/978-3-642-46181-1
- George Springer, Introduction to Riemann surfaces, Addison-Wesley Publishing Co., Inc., Reading, Mass., 1957. MR 0092855
Bibliographic Information
- © Copyright 1975 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 203 (1975), 227-245
- MSC: Primary 30A48
- DOI: https://doi.org/10.1090/S0002-9947-1975-0361054-4
- MathSciNet review: 0361054