## Isolated invariant sets for flows on vector bundles

HTML articles powered by AMS MathViewer

- by James F. Selgrade
- Trans. Amer. Math. Soc.
**203**(1975), 359-390 - DOI: https://doi.org/10.1090/S0002-9947-1975-0368080-X
- PDF | Request permission

Erratum: Trans. Amer. Math. Soc.

**221**(1976), 249.

## Abstract:

This paper studies isolated invariant sets for linear flows on the projective bundle associated to a vector bundle, e.g., the projective tangent flow to a smooth flow on a manifold. It is shown that such invariant sets meet each fiber, roughly in a disjoint union of linear subspaces. Isolated invariant sets which are intersections of attractors and repellers (Morse sets) are discussed. We show that, over a connected chain recurrent set in the base space, a Morse filtration gives a splitting of the projective bundle into a direct sum of invariant subbundles. To each factor in this splitting there corresponds an interval of real numbers (disjoint from those for other factors) which measures the exponential rate of growth of the orbits in that factor. We use these results to see that, over a connected chain recurrent set, the zero section of the vector bundle is isolated if and only if the flow is hyperbolic. From this, it follows that if no equation in the hull of a linear, almost periodic differential equation has a nontrivial bounded solution then the solution space of each equation has a hyperbolic splitting.## References

- M. F. Atiyah,
*$K$-theory*, W. A. Benjamin, Inc., New York-Amsterdam, 1967. Lecture notes by D. W. Anderson. MR**0224083** - Richard C. Churchill,
*Isolated invariant sets in compact metric spaces*, J. Differential Equations**12**(1972), 330â352. MR**336763**, DOI 10.1016/0022-0396(72)90036-8 - C. C. Conley,
*The retrograde circular solutions of the restricted three-body problem via a submanifold convex to the flow*, SIAM J. Appl. Math.**16**(1968), 620â625. MR**227529**, DOI 10.1137/0116050 - Charles C. Conley,
*On the continuation of invariant sets of a flow*, Actes du CongrĂšs International des MathĂ©maticiens (Nice, 1970) Gauthier-Villars, Paris, 1971, pp.Â 909â913. MR**0516921** - C. Conley,
*On a generalization of the Morse index*, Ordinary differential equations (Proc. NRL-MRC Conf., Math. Res. Center, Naval Res. Lab., Washington, D.C., 1971) Academic Press, New York, 1972, pp.Â 27â33. MR**0423418**
â, - C. Conley and R. Easton,
*Isolated invariant sets and isolating blocks*, Trans. Amer. Math. Soc.**158**(1971), 35â61. MR**279830**, DOI 10.1090/S0002-9947-1971-0279830-1 - James Dugundji,
*Topology*, Allyn and Bacon, Inc., Boston, Mass., 1966. MR**0193606** - Robert W. Easton,
*On the existence of invariant sets inside a submanifold convex to a flow*, J. Differential Equations**7**(1970), 54â68. MR**249755**, DOI 10.1016/0022-0396(70)90123-3 - R. W. Easton,
*Locating invariant sets*, Global Analysis (Proc. Sympos. Pure Math., Vols. XIV, XV, XVI, Berkeley, Calif., 1968) Amer. Math. Soc., Providence, R.I., 1970, pp.Â 55â59. MR**0270398** - Robert Easton,
*Regularization of vector fields by surgery*, J. Differential Equations**10**(1971), 92â99. MR**315741**, DOI 10.1016/0022-0396(71)90098-2 - Samuel Eilenberg and Norman Steenrod,
*Foundations of algebraic topology*, Princeton University Press, Princeton, N.J., 1952. MR**0050886**, DOI 10.1515/9781400877492 - Dale Husemoller,
*Fibre bundles*, McGraw-Hill Book Co., New York-London-Sydney, 1966. MR**0229247**, DOI 10.1007/978-1-4757-4008-0 - Richard McGehee,
*Parabolic orbits in the three-body problem*, Dynamical systems (Proc. Sympos., Univ. Bahia, Salvador, 1971) Academic Press, New York, 1973, pp.Â 249â254. MR**0344619** - John Montgomery,
*Cohomology of isolated invariant sets under perturbation*, J. Differential Equations**13**(1973), 257â299. MR**334173**, DOI 10.1016/0022-0396(73)90018-1 - V. V. NemyckiÄ and V. V. Stepanov,
*KaÄestvennaya Teoriya DifferencialâČnyh UravneniÄ*, OGIZ, Moscow-Leningrad, 1947 (Russian). MR**0029483** - David L. Rod,
*Pathology of invariant sets in the monkey saddle*, J. Differential Equations**14**(1973), 129â170. MR**328220**, DOI 10.1016/0022-0396(73)90082-X - Robert J. Sacker and George R. Sell,
*Existence of dichotomies and invariant splittings for linear differential systems. I*, J. Differential Equations**15**(1974), 429â458. MR**341458**, DOI 10.1016/0022-0396(74)90067-9 - George R. Sell,
*Topological dynamics and ordinary differential equations*, Van Nostrand Reinhold Mathematical Studies, No. 33, Van Nostrand Reinhold Co., London, 1971. MR**0442908** - S. Smale,
*Differentiable dynamical systems*, Bull. Amer. Math. Soc.**73**(1967), 747â817. MR**228014**, DOI 10.1090/S0002-9904-1967-11798-1 - Charles C. Conley and Joel A. Smoller,
*Viscosity matrices for two-dimensional nonlinear hyperbolic systems*, Comm. Pure Appl. Math.**23**(1970), 867â884. MR**274956**, DOI 10.1002/cpa.3160230603 - Joel A. Smoller and Charles C. Conley,
*Viscosity matrices for two-dimensional non-linear hyperbolic systems. II*, Amer. J. Math.**94**(1972), 631â650. MR**320537**, DOI 10.2307/2373748 - Joel A. Smoller and Charles C. Conley,
*Shock waves as limits of progressive wave solutions of higher order equations. II*, Comm. Pure Appl. Math.**25**(1972), 133â146. MR**306721**, DOI 10.1002/cpa.3160250203 - Edwin H. Spanier,
*Algebraic topology*, McGraw-Hill Book Co., New York-Toronto-London, 1966. MR**0210112** - Tadeusz WaĆŒewski,
*Sur un principe topologique de lâexamen de lâallure asymptotique des intĂ©grales des Ă©quations diffĂ©rentielles ordinaires*, Ann. Soc. Polon. Math.**20**(1947), 279â313 (1948) (French). MR**0026206** - F. Wesley Wilson Jr. and James A. Yorke,
*Lyapunov functions and isolating blocks*, J. Differential Equations**13**(1973), 106â123. MR**385251**, DOI 10.1016/0022-0396(73)90034-X

*The gradient structure of a flow*. I, I.B.M. Research, RC 3932 (#17806), Yorktown Heights, New York, July 17, 1972.

## Bibliographic Information

- © Copyright 1975 American Mathematical Society
- Journal: Trans. Amer. Math. Soc.
**203**(1975), 359-390 - MSC: Primary 58F20
- DOI: https://doi.org/10.1090/S0002-9947-1975-0368080-X
- MathSciNet review: 0368080