$\textrm {PL}$ involutions of $S^{1}\times S^{1}\times S^{1}$
HTML articles powered by AMS MathViewer
- by Kyung Whan Kwun and Jeffrey L. Tollefson
- Trans. Amer. Math. Soc. 203 (1975), 97-106
- DOI: https://doi.org/10.1090/S0002-9947-1975-0370634-1
- PDF | Request permission
Abstract:
We prove that the $3$-dimensional torus ${S^1} \times {S^1} \times {S^1}$ admits exactly nine nonequivalent PL involutions. With the exception of the four fixed point free ones, the involutions may be distinguished by their fixed point sets: (1) eight points, (2) two simple closed curves, (3) four simple closed curves, (4) one torus, (5) two tori.References
- E. M. Brown, Unknotting in $M^{2}\times I$, Trans. Amer. Math. Soc. 123 (1966), 480β505. MR 198482, DOI 10.1090/S0002-9947-1966-0198482-0
- P. E. Conner, Transformation groups on a $K(\pi ,\,1)$. II, Michigan Math. J. 6 (1959), 413β417. MR 123334 John Hempel, Free cyclic actions on ${S^1} \times {S^1} \times {S^1}$ (to appear). P. K. Kim and J. L. Tollefson, PL involutions of fibered $3$-manifolds (to appear).
- K. W. Kwun, Sense-preserving $\textrm {PL}$ involutions of some lens spaces, Michigan Math. J. 20 (1973), 73β77. MR 310865
- Kyung Whan Kwun and Jeffrey L. Tollefson, Uniqueness of orientation preserving $\textrm {PL}$ involutions of $3$-space, Bull. Amer. Math. Soc. 79 (1973), 761β762. MR 317329, DOI 10.1090/S0002-9904-1973-13304-X
- H. Seifert, Topologie Dreidimensionaler Gefaserter RΓ€ume, Acta Math. 60 (1933), no.Β 1, 147β238 (German). MR 1555366, DOI 10.1007/BF02398271 D. K. Showers, Thesis, Michigan State University, 1973.
- Jeffrey L. Tollefson, Involutions on $S^{1}\times S^{2}$ and other $3$-manifolds, Trans. Amer. Math. Soc. 183 (1973), 139β152. MR 326738, DOI 10.1090/S0002-9947-1973-0326738-0
- Friedhelm Waldhausen, Gruppen mit Zentrum und $3$-dimensionale Mannigfaltigkeiten, Topology 6 (1967), 505β517 (German). MR 236930, DOI 10.1016/0040-9383(67)90008-0
Bibliographic Information
- © Copyright 1975 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 203 (1975), 97-106
- MSC: Primary 57E25
- DOI: https://doi.org/10.1090/S0002-9947-1975-0370634-1
- MathSciNet review: 0370634