Automorphisms of commutative rings

Author:
H. F. Kreimer

Journal:
Trans. Amer. Math. Soc. **203** (1975), 77-85

MSC:
Primary 13B10

DOI:
https://doi.org/10.1090/S0002-9947-1975-0396521-0

MathSciNet review:
0396521

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $B$ be a commutative ring with 1, let $G$ be a finite group of automorphisms of $B$, and let $A$ be the subring of $G$-invariant elements of $B$. For any separable $A$-subalgebra $A’$ of $B$, the following assertions are proved: (1) $A’$ is a finitely generated, protective $A$-module; (2) for each prime ideal $p$ of $A$, the rank of ${A’_p}$ over ${A_p}$ does not exceed the order of $G$; (3) there is a finite group $H$ of automorphisms of $B$ such that $A’$ is the subring of $H$-invariant elements of $B$. If, in addition, $A’$ is $G$-stable, then every automorphism of $A’$ over $A$ is the restriction of an automorphism of $B$, and ${\operatorname {Hom} _A}(A’,A’)$ is generated as a left $A’$-module by those automorphisms of $A’$ which are the restrictions of elements of $G$.

- Maurice Auslander and Oscar Goldman,
*Maximal orders*, Trans. Amer. Math. Soc.**97**(1960), 1–24. MR**117252**, DOI https://doi.org/10.1090/S0002-9947-1960-0117252-7 - Maurice Auslander and Oscar Goldman,
*The Brauer group of a commutative ring*, Trans. Amer. Math. Soc.**97**(1960), 367–409. MR**121392**, DOI https://doi.org/10.1090/S0002-9947-1960-0121392-6
N. Bourbaki, - Henri Cartan and Samuel Eilenberg,
*Homological algebra*, Princeton University Press, Princeton, N. J., 1956. MR**0077480** - S. U. Chase, D. K. Harrison, and Alex Rosenberg,
*Galois theory and Galois cohomology of commutative rings*, Mem. Amer. Math. Soc.**52**(1965), 15–33. MR**195922** - H. F. Kreimer,
*A note on the outer Galois theory of rings*, Pacific J. Math.**31**(1969), 417–432. MR**252449** - H. F. Kreimer,
*Outer Galois theory for separable algebras*, Pacific J. Math.**32**(1970), 147–155. MR**271162** - Andy R. Magid,
*Locally Galois algebras*, Pacific J. Math.**33**(1970), 707–724. MR**263805** - Tadasi Nakayama,
*On a generalized notion of Galois extensions of a ring*, Osaka Math. J.**15**(1963), 11–23. MR**151493** - O. E. Villamayor and D. Zelinsky,
*Galois theory with infinitely many idempotents*, Nagoya Math. J.**35**(1969), 83–98. MR**244238**

*Éléments de mathématique*. Fase. XXVII.

*Algèbre commutative*, Actualités Sci. Indust., no. 1290, Hermann, Paris, 1961. MR

**36**#146.

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC:
13B10

Retrieve articles in all journals with MSC: 13B10

Additional Information

Keywords:
Automorphism,
commutative ring,
Galois extension

Article copyright:
© Copyright 1975
American Mathematical Society