Integration of ordinary linear differential equations by Laplace-Stieltjes transforms
HTML articles powered by AMS MathViewer
- by James D’Archangelo and Philip Hartman
- Trans. Amer. Math. Soc. 204 (1975), 245-266
- DOI: https://doi.org/10.1090/S0002-9947-1975-0357935-8
- PDF | Request permission
Abstract:
Let $R$ be a constant $N \times N$ matrix and $g(t)$ an $N \times N$ matrix of functions representable as absolutely convergent Laplace-Stieltjes transforms for $t > 0$. The paper gives sufficient conditions for certain solutions of the system $y’ = (R + g(t))y$ to be expressed as Laplace-Stieltjes transforms or as linear combinations of such transforms with coefficients which are powers of $t$.References
- P. Appell, Sur les transformations des équations différentielles linéaires, C. R. Acad. Sci. Paris 91 (1880), 211-214.
- James D’Archangelo, Linear ordinary differential equations with Laplace-Stieltjes transforms as coefficients, Trans. Amer. Math. Soc. 195 (1974), 115–145. MR 344563, DOI 10.1090/S0002-9947-1974-0344563-2
- Philip Hartman, On differential equations, Volterra equations and the function $J_{\mu }^{2}+Y_{\mu }^{2}$, Amer. J. Math. 95 (1973), 553–593. MR 333308, DOI 10.2307/2373730 —, Ordinary differential equations, Baltimore, Md., 1973.
- G. N. Watson, A Treatise on the Theory of Bessel Functions, Cambridge University Press, Cambridge, England; The Macmillan Company, New York, 1944. MR 0010746 E. T. Whittaker, On a new connexion of Bessel functions with Legendre functions, Proc. London Math. Soc. 35 (1903), 198-206.
- Aurel Wintner, On the existence of Laplace solutions for linear differential equations of second order, Amer. J. Math. 72 (1950), 442–450. MR 36889, DOI 10.2307/2372047
- Aurel Wintner, On the small divisors in integrations by Laplace transforms, Amer. J. Math. 73 (1951), 173–180. MR 42003, DOI 10.2307/2372168
- Aurel Wintner, Ordinary differential equations and Laplace transforms, Amer. J. Math. 79 (1957), 265–294. MR 86940, DOI 10.2307/2372682
Bibliographic Information
- © Copyright 1975 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 204 (1975), 245-266
- MSC: Primary 34A25
- DOI: https://doi.org/10.1090/S0002-9947-1975-0357935-8
- MathSciNet review: 0357935