The Brauer group of graded Azumaya algebras. II. Graded Galois extensions
HTML articles powered by AMS MathViewer
- by Lindsay N. Childs PDF
- Trans. Amer. Math. Soc. 204 (1975), 137-160 Request permission
Abstract:
This paper continues the study of the Brauer group ${B_\phi }(R,G)$ of $G$-graded Azumaya $R$-algebras begun in [5]. A group ${\operatorname {Galz} _\phi }(R,G)$ of graded Galois extensions is constructed which always contains, and often equals, the cokernel of ${B_\phi }(R,G)$ modulo the usual Brauer group of $R$. Sufficient conditions for equality are found. The structure of ${\operatorname {Galz} _\phi }(R,G)$ is studied, and ${\operatorname {Galz} _\phi }(R,{(Z/{p^e}Z)^r})$ is computed. These results are applied to give computations of a Brauer group of dimodule algebras constructed by F. W. Long.References
- E. Artin, Geometric algebra, Interscience Publishers, Inc., New York-London, 1957. MR 0082463
- Maurice Auslander and Oscar Goldman, The Brauer group of a commutative ring, Trans. Amer. Math. Soc. 97 (1960), 367–409. MR 121392, DOI 10.1090/S0002-9947-1960-0121392-6 H. Bass, Lectures on topics in algebraic $K$-theory, Tata Inst. Fund. Res. Lectures on Math., no. 41, Tata Institute of Fundamental Research, Bombay, 1967. MR 43 #4885.
- S. U. Chase, D. K. Harrison, and Alex Rosenberg, Galois theory and Galois cohomology of commutative rings, Mem. Amer. Math. Soc. 52 (1965), 15–33. MR 195922
- L. N. Childs, G. Garfinkel, and M. Orzech, The Brauer group of graded Azumaya algebras, Trans. Amer. Math. Soc. 175 (1973), 299–326. MR 349652, DOI 10.1090/S0002-9947-1973-0349652-3
- L. N. Childs, Abelian Galois extensions of rings containing roots of unity, Illinois J. Math. 15 (1971), 273–280. MR 274524, DOI 10.1215/ijm/1256052714
- L. N. Childs, A note on the fixed ring of a Galois extension, Osaka Math. J. 4 (1967), 173–176. MR 218403
- F. R. DeMeyer, Galois theory in separable algebras over commutative rings, Illinois J. Math. 10 (1966), 287–295. MR 191922, DOI 10.1215/ijm/1256055110 A. Fröhlich and C. T. C. Wall, Generalizations of the Brauer group. I (to appear).
- D. K. Harrison, Abelian extensions of commutative rings, Mem. Amer. Math. Soc. 52 (1965), 1–14. MR 195921
- Teruo Kanzaki, On Galois algebra over a commutative ring, Osaka Math. J. 2 (1965), 309–317. MR 191923
- F. W. Long, A generalization of the Brauer group of graded algebras, Proc. London Math. Soc. (3) 29 (1974), 237–256. MR 354753, DOI 10.1112/plms/s3-29.2.237
- F. W. Long, The Brauer group of dimodule algebras, J. Algebra 30 (1974), 559–601. MR 357473, DOI 10.1016/0021-8693(74)90224-5
- D. J. Picco and M. I. Platzeck, Graded algebras and Galois extensions, Rev. Un. Mat. Argentina 25 (1970/71), 401–415. MR 332894
- Alex Rosenberg and Daniel Zelinsky, Automorphisms of separable algebras, Pacific J. Math. 11 (1961), 1109–1117. MR 148709, DOI 10.2140/pjm.1961.11.1109
- Jean-Pierre Serre, Corps locaux, Publications de l’Institut de Mathématique de l’Université de Nancago, VIII, Hermann, Paris, 1962 (French). Actualités Sci. Indust., No. 1296. MR 0150130
- Charles Small, The Brauer-Wall group of a commutative ring, Trans. Amer. Math. Soc. 156 (1971), 455–491. MR 276218, DOI 10.1090/S0002-9947-1971-0276218-4
- O. E. Villamayor and D. Zelinsky, Galois theory with infinitely many idempotents, Nagoya Math. J. 35 (1969), 83–98. MR 244238, DOI 10.1017/S0027763000013039
- C. T. C. Wall, Graded Brauer groups, J. Reine Angew. Math. 213 (1963/64), 187–199. MR 167498, DOI 10.1515/crll.1964.213.187
- Keijiro Yamazaki, On projective representations and ring extensions of finite groups, J. Fac. Sci. Univ. Tokyo Sect. I 10 (1964), 147–195 (1964). MR 180608
Additional Information
- © Copyright 1975 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 204 (1975), 137-160
- MSC: Primary 13A20
- DOI: https://doi.org/10.1090/S0002-9947-1975-0364216-5
- MathSciNet review: 0364216