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ABSTRACT. Given two Banach spaces F H and   X\\ ||, write   F fr X  iff

for each finite-dimensional subspace   F'  of F  and each number   e > 0, there

is an isomorphism   V  of  F'   into   X  suchthat   11 jcl — II Vx\\ I < e   for each   x

in the unit ball of  F'.   Given a property   P  of Banach spaces, X  is called super-

P  iff F ft X  implies  F  is   P.   Ergodicity and stability were defined in our arti-

cles On B-convex Banach spaces. Math. Systems Theory 7 (1974), 294-299, and

C. R. Acad. Sei. Paris Ser. A 275 (1972), 993, where it is shown that super-ergodicity

and super-stability are equivalent to super-reflexivity introduced by R. C. James

[Canad. J. Math. 24 (1972), 896-9041.   g-ergodicity is defined, and it is proved

that super-Q-ergodicity is another property equivalent with super-reflexivity.   A

new proof is given of the theorem that /-spaces are reflexive [Schaffer-Sundaresan,

Math. Ann. 184 (1970), 163-1681.   It is shown that if a Banach space  X  is B-

convex, then each bounded sequence in   X  contains a subsequence   (yn)   such

that the Cesâro averages of   (— 1 ) y¡ converge to zero.

Given two Banach spaces F\ I and X\\ \\,F is said to be finitely represent-

able in X, in symbols F fr X, iff for each finite-dimensional subspace F' of F

and each number  e > 0, there is an isomorphism   V of F' into X such that

11*1 - II Vx\\ I < « for each x  in the unit ball of F'. Given a property P of

Banach spaces, we say that X is super-? iff F fr X implies that F has the

property P. Super-reflexive spaces were introduced by James [12], [13] ; the re-

sult announced in [4] but implicit in the earlier paper [3] is that the following

super-properties are equivalent:   Super-ergodicity, super-reflexivity, super-Banach-

Saks, super-stability. Here we define Q-ergodicity, a notion in appearance weaker

than ergodicity, and prove that super-ß-ergodicity is another property equivalent

with super-reflexivity.  At the same time we give a new proof of James's theorem

[10] that (2, e)-convex spaces are reflexive, and more generally of the recent re-

sults of Schaffer-Sundaresan [19], that /-spaces are reflexive. We also show that
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80 ANTOINE BRUNEL AND LOUIS SUCHESTON

5-convex spaces are alternate signs Banach-Saks: Each bounded sequence contains a

subsequence (yn) such that the Cesáro averages of (- \)'y¡ converge to zero.

1. Preliminaries.  Let AT be an arbitrary Banach space with norm  || ||.  An

isometry (contraction) is a linear map  T: X—> X such that  \\Tx\\ = ||x||

(|| Tx\\ < ||jc||) for each x C X. The Cesáro averages (l/n)(T° + • • • 4- t"'1)

are denoted by An, or An(T). The following simple result seems new.

Proposition 1.1. // T is a contraction on a Banach space X then for

each x E X the limit of ^Anx II exists.

Proof.   Let x E X and set a = lim inf IM„x||.  It suffices to show that,

for each 5 > 0,

(1.1) limsupMnx||<a + S.

Given a 5 > 0, choose a fixed integer N suchthat  M^xll < a + 5. If

m and «  are positive integers, mN < n <(m + 1)N, then as m —*■ °°

(1-2) UmN - An\\ -* 0.

Therefore it suffices to prove that limsupm||y4mjV-x|| < a + S.  ||r|| < 1  implies

that  \\T'NANx\\ < a + 5  for each /. Hence for each m

(1.3) \\AmN(T)x\\ = \\Am(TN)AN(T)x\\ < a + 6.

This proves that lim|Mnx||  exists. It is easy to see that this limit, considered as

a function of x, is a seminorm.  D

Note that applying the proposition to the space of bounded operators on X

one obtains:  for each contraction  T, ]im\\An(T)\\  exists.

We will now define  ß-ergodicity.  Let S be the space of all sequences

a = (a,),= 1 2 ...   such that a¡ = 0 but all but finitely many Vs. Assuming  T

fixed, set, for each x GX and a ES,

Q(x;a;n1,n2, •••)

(1.4)
= IM«,* + M«/"1* + "^n3THl+"2X + ' ' ' II.

(1.5) L(x, a) = Urn sup Q(x; a;n1,n2, • • •),      n = inf(nf).
n-x»

The  lim sup above becomes limit if a is one-dimensional (by Proposition 1.1),

or if the norm is "invariant under spreading of the sequence  T"x"  (see Propo-

sition 2.2 below).

Let r be an integer > 2 and  e a number, 0 < e < 1/r.   The space X

is called  (r, éyergodic iff for each isometry  T, each x EX, any r elements
License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



/-CONVEXITY AND SUPER-PROPERTIES OF BANACH SPACES 81

a1,' ' • ,ar of S such that L(x, a') < 1, one has

(1.6)    min L(x,a1+a2 + -'-+ak-ak+1-ak+2-ar)<r(l-e).

Kk<r

X is caüed Q-ergodic, oi qualitatively ergodic, iff it is ergodic for some r and e.

We recall that X is called ergodic (for isometries) iff ]imAnx exists for each iso-

metry T and each xEX. We now will show that if X is ergodic, then it is (r, e)-er-

godic for each r and e. It is known and easy to see that the ergodic theorem for T

implies that, for each x, limn AnT'x exists uniformly in/. (Apply, e.g., the de-

composition theorem [6, p. 662] ; uniform in / converges to the limit is obvious

for a r-invariant x, and also for an x of the form x = v - Ty.) Let x = lim Anx,

a' = (a[), a¡ = ^¡alWxW. If T is ergodic then the ;'th summand in (1.4) converges

to a3c, hence (1.6) follows from the inequality

min   lat -fa2 + ••• +OLk-ak+i - ••• -ar\<(r- l)suplayl
Kk<r j

<L7> <r(l-e),

easy to verify by induction on r.

A Banach space X is called J-(r, e)-convex, where r>2, 0<e<l, iff for

each /--tuple (xlt ' ' • ,xr) of elements of the unit ball  Ux of X one has

(1.8) min    ||Xj + • • • +xk -xk+1 - • •• -xr\\ <r(l - e).
Kk<r

X  is called /- convex iff it is  J-(r, e)-convex for some r and  e. It

follows from a recent unpublished result of R. C. James [13] that/-convexity

is a properly stronger notion than 5-convexity introduced in [2] ; cf. §3 below.

It is easy to see that/-(r, e)-convexity, hence /-convexity, are super-properties;

i.e., if X enjoys them, so does every space finitely representable in X. It has

been proven by Schaffer-Sunderasan [19], and will be again shown below, that

/-convex spaces are reflexive; hence, as already noted in [14], super-reflexive.

Since the ergodic theorem holds for reflexive spaces, it follows that /-convex

spaces are ergodic. It would be perhaps of interest to give a direct proof of this

result; here we only point out that J-(2, e)-convexity easily implies the relation:

(1.9) lim sup|M„(7> - Ap(T)x\\ < 2(1 - e)lim||yt„(7>||
n,p-+<»

for each contraction  T on X and each x EX:  Note that for any fixed positive

integers /', N, m one has the identities

(1.10) A2iN = A((TN) [HAN + TiNAN)],
License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



82 ANTOINE BRUNEL AND LOUIS SUCHESTON

I m —I

(1.11) AN - AmN = i Z  (AN - T^AN).
i=l

Let xEX; lim\\Anx\\ = a exists by Proposition 1.1.  Select a fixed number 6,

0 < 6 < ea/(2 - e). Choose a fixed N so large that

(1.12) IIUjv+^H-aKS,     Ar = 0,l,..-.

Since lim < 1, either for some integer í

(1.13) \\ANx + T^A^W < 2(1 - e)(a + 5),

or for all i

(1.14) \\ANx - T^AxxW < 2(1 - e)(a + 6).

In the first case (1.10) implies ||^42iWx|| < (1 - e)(a + 5), which contradicts

(1.12). Therefore (1.14) must hold for all i, and (1.11) implies \\ANx - AmNx\\

<2(1 - e)(a + 5) for all m. Since 6  may be chosen arbitrarily small, (1.2)

now implies (1.9).

2. Ergodic super-properties.  A Banach space X with norm  || ||  is given.

A bounded sequence (xn) in X is called stable iff there is an element   x such

that

(2.0 "HUs**.-5!-0
uniformly in the set   K of all strictly increasing sequences (kn) of natural num-

bers. Actually, the uniformity is an easy consequence of convergence for all (kn)

G K. A Banach space is called stable iff every bounded sequence contains a

stable subsequence; Banach-Saks iff every bounded sequence contains a subse-

quence which converges Cesáro. Professor Paul Erdös has recently informed us

that he had shown jointly with Professor M. Magidor that every space which is

Banach-Saks is also stable, the proof being based on the combinatorial fact that

every analytic set is Ramsey [20].

We now return to the setting of our papers [3], [4], in which we have

attempted to connect ergodic properties of X with stability, or the Banach-Saks

property. We have at first asked the following question:  Does an arbitrary

bounded sequence (xn) in X admit a subsequence (en) such that the shift  T

on (en) is defined and power-bounded?  (By a shift on (en) we understand an

operator T satisfying Ten=en + l   for all n, and acting on the space spanned

by the en's.) If the answer to this question had been positive, it would follow at

once that the ergodic theorem (power-bounded version) for X and its subspaces
License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



/-CONVEXITY AND SUPER-PROPERTIES OF BANACH SPACES 83

implies the Banach-Saks property—therefore the answer is negative, since there are

reflexive spaces which are not Banach-Saks (Baernstein [1]).  This showed the

need to change the norm. Denoting the space spanned by  (en) and a new norm

I | by F, we could obtain [3] that the shift on  (en) be an isometry, and yet

II be so close to  || ||  that the ergodic theorem for  T on F implies that  (en)

contains a stable subsequence in X, and F fr X. The implication announced in

[4], super-ergodic ■* super-stable, follows. We recapitulate the construction of

(en) and F.  S is the space of all sequences a = (a,),= 1 2 ...   with a¡ = 0  for

all but finitely many i. We have

Proposition 2.1 (Proposition 1 of [3]). Each bounded sequence (xn)

in X contains a subsequence (en) with the following property:  For each aE

S there exists a number L(a) such that || 2a,e„ || —► L(a) as the sequences
i

(«j), (n2), ' • ' converge to °° so that ni < n2 < ■ • • .

Now fix (xn) and let (en) be a subsequence of (x„) satisfying the con-

ditions of the above proposition.  Let ip(S) be the space of linear combinations

Sflj-e,., aE S.   As shown in [3], we may assume without loss of generality that

the en's are algebraically independent in X, and that  | Za¡e¡\   defined as

equal to L(a) is a norm on ^(5). We denote by F the completion of ip(5)

in this norm. We now show that F fr X:   If F' is an n-dimensional subspace of

F, F' is topologically isomorphic to I ^"\ hence we commit a negligible error

assuming that F' is generated by ex,' ' • ,em   for m  large.  Let the same

vectors in X generate a subspace H. Set Sn = Tn: #—► X.   Then  ||S„x||—►

|x| on H implies M = supn||S„|| <°° (uniform boundedness principle), hence

II r"x|| —► |x| uniformly on compacts of H; therefore uniformly on UF'.  Indeed,

if Y = {y¡}   is a finite 5-net in a compact  C C H, then  11| 7"*jc|| - |x| I < 5

on  Y implies that  | \\T"x\\ - |x| |< 5 + 25M on C. To see this, note that if

Hx-r.-IKS  then

11| T"x\\ - |x| | < 11| f"x|| - || T»yfl I + 11| r"y,.|| - \yt\ | + 11v,.|   | |x| -

< 8M + SM

The relation F fr X was already implicitly used in Lemma 6   [3] and in

[4]. Parting from F we now propose to introduce a new norm ! !  on (en),

with properties even more pleasing than  | I; the space G generated by  (en),

! ! will still be finitely representable in X. The main virtue of I I  (not included

in isometric character of the shift  T) may be described as invariance under

spreading, or (IS) property:  The norm of any finite combination of the en's

remains the same when the vectors are shifted, even though their mutual distances

(but not positions) may change. This property, formally stated in [3, Lemma 1],License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



84 ANTOINE BRUNEL AND LOUIS SUCHESTON

is an immediate consequence of Proposition 2.1. The norm ! ! will inherit from

I |  the (IS) property, but will also be equal signs additive, in short of type (ESA):

In computing the norm of any finite linear combination of the e^s, consecutive

terms of equal sign may be combined.  Formally, for any vector x = a1el + • • •

+ aqeq, any integers k, p  such that   1 < k < p < q and a¡ > 0  for fc < /' <

p, one has

(2.2) '.xl = \kZ aiei + (ak + '--+ap)ek+   ¿   atet\.
*i=l i=p + l

It is easy to see that it suffices to verify (2.2) for all k and p  such that p - k

= 1.

We now let An(T) act on the e/s spread so that different averages have dis-

joint support. More precisely, given a fixed a = (a¡) E S with ai = 0  for i> q,

we define

Pinlt'-' ,«,;$!,-•• ,sq) = axA    e    +••• +aqA    e   ,

(2.3)
Sj >0, s2 >sl +«!,••• ,sq >sq_1 +nq_1 ■

Invariance of | | under spreading implies that the F-norm of the first expression

in (2.3) does not depend upon the choice of the s,'s; therefore this norm will be

denoted by Q(nl, • • • , nq), or Q(e1 ; a; nl, • • • , nq).

Proposition 22. For each x = alel + • • • + aqeq  in iç(S), the limit

of Q(el',a;n1, • • • ,n) as inf(n¡) converges to infinity exists. This limit,

denoted \x\,is a seminorm on <p(S).

Proof.  The invariance of I I  under spreading implies that for any fixed

positive integers Nlt • • • ,Nq; mx, • • • ,mq

(2.4) Q(mlN1, • • • , mqNq) < Q(N1, • • • , Nq).

The particular case of (2.4) where mt = 1  for i = 2, • • • , q is obtained by

taking the Cesáro average of

kN
P(ax T    lAN)eSi + HAN2es2 +'" + aqANqesq)

for k = 0, 1, • • • , m j — 1,

since s2 > Sj + m fly, s¡ > s¡_l + N¡ for i = 3, • • • ,q implies that each

term has the norm = Q(Nt, • • • , A^). An obvious induction argument, again

using invariance under spreading of I I, establishes (2.4). We denote by a (ß) the

limit inferior (limit superior) of ß(«j, • • • , nq) as n¡ converge independently

to infinity. To prove the proposition, it suffices to show that, for each 5 > 0,

ß < a + 5. Choose N1$ * • • ,Nr fixed such that ß^, • • • ,Nq)<a + 8;

(2.4) implies Q(miN1, " ' ,mrNr)<a + 8   for all m¡. A computation anal-
License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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ogous to (1.2) shows that if m¡N¡ < nt < (m¡ + 1)N¡ for all i, then

(2.5) um sup| Q(m1Nl, • • • , mqNq) - Qfolt • • • , n )\ = 0.
m .-*<»>

(3<a4-S  follows.  Finally, it is easy to see that  !!  is a seminorm on  ^(S).

Lemma 2.1. Theseminorm   !! ¿s o/fype (ESA) o« the e^s.

Proof.  We verify (2.2) assuming, as we may, that p = k + 1.  Since   ! !

is a continuous function of coefficients a¡, we further may suppose that ak/ak+l

is a rational number, and write ak = ar, ak+1 = as, where r, s are positive

integers. Then for all integers m > 0, t > 0, one has

(2-6) akAmret + ak+1Amsemr+t = (ak + ak+1)Am(r+s)et.

The relation (2.5) is now applied, with mk = mk + l = m, Nk = r, Nk+1 = s

to compute   !x!, and with Nk = r + s and mk = m  to compute the right-hand

side of (2.2) which is thus established.   D

Lemma 22.   If let — e2\ = 0 then  (en) admits a subsequence stable

in X.

Proof.   lel - e2\ = 0 implies that

\Ane1 -Are1+n\^-0   and    \Apel - Are1+p\—* 0   as «, p, r —► °°.

Choosing r so that r/(n + p) —*■ °°, we have that   \Are1+n - Are1 +  | —► 0;

therefore by the triangular inequality the sequence Anel   is Cauchy in F.

Proposition 3   [3] is now applicable.   D

Since we wish to prove that the space X is stable, we only need to con-

sider the case when  \ex — e2\ > 0; then  ! !  may be easily seen to be a norm

on <p(S):  If !2*=1 atet\ = 0, then  \ale1 + a3e3 + • • • + aq+leq + 1\ = 0

and also  \a¡e2 + a3e3 + • • • + aq+leq + l\ = 0;hence   \al(el - e2)\ = 0

which implies al = 0.  Similarly one shows that a2 = 0, ■ • • , aq = 0.  Denote

by G the completion of i¿<S) in this norm.

We show that G is finitely representable in F, hence in X.   Let  G' be a

finite-dimensional subspace of G; we may assume that  G' is generated by e¡,

e2,' • ' ,eq. Let   V = Vn ,..._„    map each vector a1e1 + • • • + aqeq  onto

aiAn]el+a2AnT^e,+-"+aqAnTn^-+ni^el.

Then for all x E UG', by Proposition 2.2   | !x! - | Kx| |  is small if «j, • • • ,

«    are large. G ft F easily follows (see the proof of F fr X above).

Define a seminorm M on S by
License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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(2.7)        M(a) - \a1(e1 - e2) + a2(e3 - e4) + a3(es - e6) + • • • !.

Remark.   The proofs of the following Lemma 2.3 and Proposition 2.3 use

only the (IS) property of the norm. Thus they remain valid with  | I  replacing

! !.

Lemma 2.3. M(a)> M(b) if for each i, a¡bi>0 and  \a¡\ > \b¡\. Hence

M is orthogonal, i.e., M(a) > M(a+ ), M(a) > M(a~ ), where a+  is a sequence

(af ), a~   the sequence (aj ).

Proof.   The invariance under spreading of I I  implies that for each /,

each n,

,-, «   M(a) = !y + ai(ev-« " e2/} + z! = !y + afev ' ev+l) + zl

» ... « i y + aj(e2¡_, +„ - e2j+n) + z\

where

/-i °°
(2.9) y = T,   ai(e2i-l  ~e2i)>       z=    Z    <*i(e2i+n-l-e2i+n)-

i= 1 /=/+1

(Since a ES, z  has only finitely many summands.) Summing the n + 1  ex-

pressions inside  ! !  in (2.8) and dividing by n + 1, one obtains

M(a) >\y+z\- la,!!^., - e2j+J(n + 1)!.

Let n —► °°; it follows that M(a) > M(a), where a'¡ = 0, a\ = a¡ for i # /.

The lemma is proved, because M is a convex function of coordinates.

Proposition 23. If G does not contain an isomorphic copy of cQ, then

(2.10) Urn !e, -e2 +e3 -e4 + ••• + e2n_l - e2n\ = °°.
n

Proof. Set un=e2n_x - e2n; let G' be the subspace of G generated

by the «,'s. Write M^a^^) = M(a) for a E S; extended to G', M is a norm

coinciding with ! !. Let \a\ = a+ + a', N(a) = M(\a\), N(y) = N(a) if y =

Styl,, a ES. N(a) <M(a+ ) + M(a~) < 2M(a) by Lemma 2.3. Therefore

(2.11) KN(ä)<M(a)<N(ß).

Extended to  G', N is a norm equivalent with M. This observation will be

useful in §3 below. Now if (2.10) fails, Lemma 2.3 gives a ß such that, for all

n,

(2.12) !e, -e2+e3-e4 + "-+e2n_l -e2n\<ß,

and also shows that M(a+) < ß • supCIa,-!), M(a~) < ß supda,-!), M(a) <

2ß sup(|a(.l). Also,M(a) > ,ai(e2t_l - e2l)\ = \ai\(el - e2), so that M(a) >License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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(s\xp\ai\)\ei - e2\. Thus G' is a subspace of G that is isomorphic to c0.

Proposition 2.4. If (2.10) holds, then G is not J-convex.

Proof.  We show that  G is not J-(r, e)-convex by first giving a detailed

and "graphic" proof of the case r - 2, then a brief proof of the general case.

Set

vn = el ~ e3 +"''+e4n-3 _e4n-l '

wn=      +e2 -e4 + >-+ e4n_2 -e4n.

We have  !u„! = !wn! = \vn + w„!/2, the last equaUty by (ESA). To prove that

G is not /-(2, e)-convex, it will suffice to prove that   \vn - w„!/2!u„!  conver-

ges to 1. This follows from (2.10) because

]vn - Wn] = ! el  - (e2 + e3) + (*4 + e5>-

-(e4n-2  +e4n-l) + (e4n + e4n+ l) ~ e4n+ 1!

«=»      .el. -r ¿.u„.      •e4n + 1..

We now show, by essentially the same argument, that G is not J-(r, e>

convex, where r > 2 is arbitrary.  Set for / = 1, 2, • • • , r; n = 1, 2, • • • ,

(2.13)       u> = e¡ - ej+r + e/+2r-+ej+{2„_2)r - ej+(2n_l)r.

Then !u' = !u¿ ! for each/. In the expression dk = u¿ + ü^ + • • • + u* - vk+1 - • • •

- xfn the terms are arranged as follows:   First write Sl = ex + e2 + • • • + ek.

Then (2n - l)r terms grouped so that r consecutive ef's with — sign alter-

nate with r consecutive e/s with  +  sign:

s2 = - (ek+i + ^+2 + ' • * + ek+r) + (ek+r+l + •■•+ ek+2r)-

+ (ek + 2(n-2)r+l + * " + ^ + 2(„_i)r)-

53 is composed of the remaining r - k terms of dk. Then limn \S¡\/r\vn\ =

0 for / = 1, 3; = 1 for / = 2. Hence lim„ \dk\¡r\vn\ = 1 for each k = 1,

2, • • • , r. The proposition is proved.

Now assume that X is /-convex; then so is G and G cannot contain an

isomorphic copy of c0  (cf. [10] or [8], where this is proved for 5-convex

spaces). Propositions 2.3 and 2.4 and Lemma 2.2 now imply the following theorem:

Theorem 2.1. A J-convex Banach space is stable (hence super-stable).

Theorem 2.2. A super-Q-ergodic Banach space is super-stable.

Proof.  If X is super-ß-ergodic then G is ß-ergodic, and the proof of

Proposition 2.4 yields a contradiction. Lemma 2.2 now implies that (xn) has aLicense or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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subsequence stable in X; since (x„) is arbitrary, it follows that X is stable.

Thus super-ß-ergodicity implies stability; it implies super-stability because the re-

lation  "fr" is transitive.   D

Since a Banach-Saks space, and a fortiori a stable space, is easily seen to be

reflexive (cf. [17]), the argument above provides a new proof that /-convex spaces

are reflexive. We finally observe that in the course of the proof of Theorem 2.1

we establish the following:  Any sequence (xn) admits a subsequence (en) such

that the sequence  (e2n_1 - e2n) is an unconditional basis for the IS norm  | |,

finitely representable in  II II.  (Because an orthogonal norm is unconditional, and,

as observed above, the proofs of Proposition 2.3 and Lemma 2.3 are valid for the

norm  | | as well as  ! !.)

3. Alternate signs Banach-Saks property. A Banach space X is called

(r, eyconvex iff for any r elements Xj, • • • , xr in  Ux  there is a sequence of

signs ffj, • • • ,ar such that (l/rXffjXj + • • • + arxr) < 1 - e. A Banach

space is called B-convex iff it is (r, e)-convex for some integer r and some  e > 0.

Theorem 3.1.  Every bounded sequence (xn) in a B-convex Banach space

admits a subsequence (yn) such that

(3.1) I t (-1?+V, —0."  i=i

Proof.  We may assume that  (x„) is not stable, since otherwise  (y„)

satisfying (3.1) may be obtained as a union of two stable subsequences of (x„).

Let F' be the subspace of F generated by «x = ex - e2, u2 = e3 - e4, • • • .

If X is 5-convex, then so is F1 and therefore, as it is easy to see, there exists

a sequence of signs  (an) such that

The proof of (3.2) is only sketched since the argument is known. We may assume

|«,| < 1  for all i.  Let X be (r, e)-convex. First choose signs a} = +, o\,

a\,---  so that if yk = r-'Sf+^^a/«,., then  | yk\ < 1 - e for k * 0,1,

• • • .   Second choose signs   a\ = +, a2, a\, • • •    so that if   zk =

r~l mi+krofyi then |zk| < (1 - e)2  for *« 0,1, • • • . Next take

Cesáro averages of successive r-tuples of o3¡z¡, where of  are appropriate signs,

etc. This procedure yields a sequence of signs a{ satisfying (3.2).

As already observed, the proofs of Lemma 2.3 and Proposition 2.3, in

particular (2.11), use only the (IS) property of the norm, hence remain valid

with | | replacing  ! !. Therefore (3.2) remains valid when all the a ¡'s are re-

placed by the sign +. Proposition 1.1 with - T replacing  T now implies that

(3.2) lim inf
n

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



/-CONVEXITY AND SUPER-PROPERTIES OF BANACH SPACES 89

n~1(ul + • • • 4- un) converges to zero in F. The proof of Proposition 3 [3]

remains valid if (un) replaces (en); hence the sequence  (un) contains,a subse-

quence stable in X. This proves (3.1).   D

Applying the theorem that every analytic (or only Borel) set is Ramsey (cf.

the remarks in the beginning of §2), one may strengthen Theorem 3.1 to read:

Every bounded sequence (x„) in a 5-convex space contains a subsequence (zn)

such that (3.1) holds for each subsequence (yn) of (zn).

The alternate signs Banach-Saks property does not characterize 5-convex

spaces since c0  has it, as has been shown to us by Professor A. Peiczyiiski.

Proposition 3.1. Let (xn) be a sequence of vectors in c0, xn =

(xni))"=v with   llxjl = sup,. | x^ | < 1 for all n.   Then for each  e>0 there

exists a subsequence (yn) of (xn) such that for all integers m

(3.3) £ (-D/+V/ sup
I

/+iv(0 <2 4-e.

Hence (3.1) holds.

Proof.  Choose e > 0. Since we can pass to subsequences and apply the

diagonal procedure, we may and do assume that lim^^x^ = a¡ exists for each

/ and also that  |xjM - a¡\< 2""e if |x(')|>2_fce for some k < n.  Then,

for a subsequence (yn).

Z(-D/+1V/
/=i

= sup
i

m

£(_!)/+1,«

/=!

<2 + e,

since for each /' we can replace by a¡ each xn^  for which there exists k < n

such that  Ixj^l > 2~ke, and obtain

m /» »
£ (- l),+ 1y¡° <eiZ 2~"\ + lx«l+ lßJ.|<2 + e. D

Note that reflexive spaces need not be alternate signs Banach-Saks:  The

example in [1] is not alternate signs Banach-Saks.
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