On $J$-convexity and some ergodic super-properties of Banach spaces
HTML articles powered by AMS MathViewer
- by Antoine Brunel and Louis Sucheston
- Trans. Amer. Math. Soc. 204 (1975), 79-90
- DOI: https://doi.org/10.1090/S0002-9947-1975-0380361-2
- PDF | Request permission
Abstract:
Given two Banach spaces $F||$ and $X|| ||$, write $F{\text { fr }}X{\text { iff}}$ for each finite-dimensional subspace $F’$ of $F$ and each number $\varepsilon > 0$, there is an isomorphism $V$ of $F’$ into $X$ such that $||x| - ||Vx||| \leq \varepsilon$ for each $x$ in the unit ball of $F’$. Given a property ${\mathbf {P}}$ of Banach spaces, $X$ is called super-${\mathbf {P}}{\text { iff }}F{\text { fr }}X$ implies $F$ is ${\mathbf {P}}$. Ergodicity and stability were defined in our articles On $B$-convex Banach spaces, Math. Systems Theory 7 (1974), 294-299, and C. R. Acad. Sci. Paris Ser. A 275 (1972), 993, where it is shown that super-ergodicity and super-stability are equivalent to super-reflexivity introduced by R. C. James [Canad. J. Math. 24 (1972), 896-904]. $Q$-ergodicity is defined, and it is proved that super-$Q$-ergodicity is another property equivalent with super-reflexivity. A new proof is given of the theorem that $J$-spaces are reflexive [Schaffer-Sundaresan, Math. Ann. 184 (1970), 163-168]. It is shown that if a Banach space $X$ is $B$-convex, then each bounded sequence in $X$ contains a subsequence $({y_n})$ such that the Cesàro averages of ${( - 1)^i}{y_i}$ converge to zero.References
- Albert Baernstein II, On reflexivity and summability, Studia Math. 42 (1972), 91–94. MR 305044, DOI 10.4064/sm-42-1-91-94
- Anatole Beck, On the strong law of large numbers, Ergodic Theory (Proc. Internat. Sympos., Tulane Univ., New Orleans, La., 1961) Academic Press, New York, 1963, pp. 21–53. MR 0160256
- Antoine Brunel and Louis Sucheston, On $B$-convex Banach spaces, Math. Systems Theory 7 (1974), no. 4, 294–299. MR 438085, DOI 10.1007/BF01795947
- Antoine Brunel and Louis Sucheston, Sur quelques conditions équivalentes à la super-réflexivité dans les espaces de Banach, C. R. Acad. Sci. Paris Sér. A-B 275 (1972), A993–A994 (French). MR 318843
- Mahlon M. Day, Normed linear spaces, Reihe: Reelle Funktionen, Springer-Verlag, Berlin-Göttingen-Heidelberg, 1958. MR 0094675
- Nelson Dunford and Jacob T. Schwartz, Linear Operators. I. General Theory, Pure and Applied Mathematics, Vol. 7, Interscience Publishers, Inc., New York; Interscience Publishers Ltd., London, 1958. With the assistance of W. G. Bade and R. G. Bartle. MR 0117523
- Per Enflo, Banach spaces which can be given an equivalent uniformly convex norm, Israel J. Math. 13 (1972), 281–288 (1973). MR 336297, DOI 10.1007/BF02762802
- Daniel P. Giesy, On a convexity condition in normed linear spaces, Trans. Amer. Math. Soc. 125 (1966), 114–146. MR 205031, DOI 10.1090/S0002-9947-1966-0205031-7
- D. P. Giesy and R. C. James, Uniformly non-$l^{(1)}$ and $B$-convex Banach spaces, Studia Math. 48 (1973), 61–69. MR 333669, DOI 10.4064/sm-48-1-61-69
- Robert C. James, Uniformly non-square Banach spaces, Ann. of Math. (2) 80 (1964), 542–550. MR 173932, DOI 10.2307/1970663
- Robert C. James, Some self-dual properties of normed linear spaces, Symposium on Infinite-Dimensional Topology (Louisiana State Univ., Baton Rouge, La., 1967) Ann. of Math. Studies, No. 69, Princeton Univ. Press, Princeton, N.J., 1972, pp. 159–175. MR 0454600
- Robert C. James, Super-reflexive Banach spaces, Canadian J. Math. 24 (1972), 896–904. MR 320713, DOI 10.4153/CJM-1972-089-7 —, A nonreflexive Banach space that is uniformly nonoctahedral (to appear).
- Robert C. James and Juan Jorge Schäffer, Super-reflexivity and the girth of spheres, Israel J. Math. 11 (1972), 398–404. MR 305045, DOI 10.1007/BF02761467
- Joram Lindenstrauss, On James’s paper “Separable conjugate spaces”, Israel J. Math. 9 (1971), 279–284. MR 279567, DOI 10.1007/BF02771677
- Jürg T. Marti, Introduction to the theory of bases, Springer Tracts in Natural Philosophy, Vol. 18, Springer-Verlag New York, Inc., New York, 1969. MR 0438075, DOI 10.1007/978-3-642-87140-5
- Togo Nishiura and Daniel Waterman, Reflexivity and summability, Studia Math. 23 (1963), 53–57. MR 155167, DOI 10.4064/sm-23-1-53-57
- A. Pełczyński, A note on the paper of I. Singer “Basic sequences and reflexivity of Banach spaces”, Studia Math. 21 (1961/62), 371–374. MR 146636, DOI 10.4064/sm-21-3-370-374
- Juan Jorge Schäffer and Kondagunta Sundaresan, Reflexivity and the girth of spheres, Math. Ann. 184 (1969/70), 163–168. MR 259571, DOI 10.1007/BF01351559
- Jack Silver, Every analytic set is Ramsey, J. Symbolic Logic 35 (1970), 60–64. MR 332480, DOI 10.2307/2271156
- Ivan Singer, Bases and quasi-reflexivity of Banach spaces, Math. Ann. 153 (1964), 199–209. MR 162121, DOI 10.1007/BF01360316
- Ivan Singer, Bases in Banach spaces. I, Die Grundlehren der mathematischen Wissenschaften, Band 154, Springer-Verlag, New York-Berlin, 1970. MR 0298399, DOI 10.1007/978-3-642-51633-7
Bibliographic Information
- © Copyright 1975 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 204 (1975), 79-90
- MSC: Primary 46B05
- DOI: https://doi.org/10.1090/S0002-9947-1975-0380361-2
- MathSciNet review: 0380361