On the $2$-realizability of $2$-types
HTML articles powered by AMS MathViewer
- by Micheal N. Dyer
- Trans. Amer. Math. Soc. 204 (1975), 229-243
- DOI: https://doi.org/10.1090/S0002-9947-1975-0380783-X
- PDF | Request permission
Abstract:
A $2$-type is a triple $(\pi ,{\pi _2},k)$, where $\pi$ is a group, ${\pi _2}$ a $\pi$-module and $k \in {H^3}(\pi ,{\pi _2})$. The following question is studied: When is a $2$-type $(\pi ,{\pi _2},k)$ realizable by $2$-dimensional CW-complex $X$ such that the $2$-type $({\pi _1}X,{\pi _2}X,k(X))$ is equivalent to $(\pi ,{\pi _2},k)$? A long list of necessary conditions is given (2.2). One necessary and sufficient condition (3.1) is proved, provided $\pi$ has the property that stably free, finitely generated $\pi$-modules are free. βStableβ $2$-realizability is characterized (4.1) in terms of the Wall invariant of [15]. Finally, techniques of [5] are used to extend C. T. C. Wallβs Theorem F of [15] to a space $X$ which is dominated by a finite CW-complex of dimension 2, provided ${\pi _1}X$ is finite cyclic. Under these conditions $X$ has the homotopy type of a finite $2$-complex if and only if the Wall invariant vanishes.References
- Hyman Bass, Algebraic $K$-theory, W. A. Benjamin, Inc., New York-Amsterdam, 1968. MR 0249491
- H. Bass, Modules which support nonsingular forms, J. Algebra 13 (1969), 246β252. MR 245569, DOI 10.1016/0021-8693(69)90073-8
- Henri Cartan and Samuel Eilenberg, Homological algebra, Princeton University Press, Princeton, N. J., 1956. MR 0077480
- W. H. Cockcroft and R. G. Swan, On the homotopy type of certain two-dimensional complexes, Proc. London Math. Soc. (3) 11 (1961), 194β202. MR 126271, DOI 10.1112/plms/s3-11.1.193
- Micheal N. Dyer and Allan J. Sieradski, Trees of homotopy types of two-dimensional $\textrm {CW}$-complexes. I, Comment. Math. Helv. 48 (1973), 31β44; corrigendum, ibid. 48 (1973), 194. MR 377905, DOI 10.1007/BF02566109
- P. Hall, Finiteness conditions for soluble groups, Proc. London Math. Soc. (3) 4 (1954), 419β436. MR 72873, DOI 10.1112/plms/s3-4.1.419
- H. Jacobinski, Genera and decompositions of lattices over orders, Acta Math. 121 (1968), 1β29. MR 251063, DOI 10.1007/BF02391907
- Saunders MacLane, Cohomology theory in abstract groups. III. Operator homomorphisms of kernels, Ann. of Math. (2) 50 (1949), 736β761. MR 33287, DOI 10.2307/1969561 S. Mac Lane and J. H. C. Whitehead, On the $3$-type of a complex, Proc. Nat. Acad. Sci. U.S.A. 36 (1950), 41-48. MR 11, 450.
- Wilhelm Magnus, Abraham Karrass, and Donald Solitar, Combinatorial group theory: Presentations of groups in terms of generators and relations, Interscience Publishers [John Wiley & Sons], New York-London-Sydney, 1966. MR 0207802
- Irving Reiner, A survey of integral representation theory, Bull. Amer. Math. Soc. 76 (1970), 159β227. MR 254092, DOI 10.1090/S0002-9904-1970-12441-7
- Sze-tsen Hu, Homotopy theory, Pure and Applied Mathematics, Vol. VIII, Academic Press, New York-London, 1959. MR 0106454
- John Stallings, A finitely presented group whose 3-dimensional integral homology is not finitely generated, Amer. J. Math. 85 (1963), 541β543. MR 158917, DOI 10.2307/2373106
- Richard G. Swan, $K$-theory of finite groups and orders, Lecture Notes in Mathematics, Vol. 149, Springer-Verlag, Berlin-New York, 1970. MR 0308195, DOI 10.1007/BFb0059150
- C. T. C. Wall, Finiteness conditions for $\textrm {CW}$-complexes, Ann. of Math. (2) 81 (1965), 56β69. MR 171284, DOI 10.2307/1970382
- J. H. C. Whitehead, Combinatorial homotopy. I, Bull. Amer. Math. Soc. 55 (1949), 213β245. MR 30759, DOI 10.1090/S0002-9904-1949-09175-9
- J. H. C. Whitehead, Simple homotopy types, Amer. J. Math. 72 (1950), 1β57. MR 35437, DOI 10.2307/2372133 M. N. Dyer, On the second homotopy module for $2$-complexes (to appear). β, The homotopy type of generalized lens spaces (to appear). A. G. KuroΕ‘, Theory of groups, 2nd ed., GITTL, Moscow, 1953; English transl., vol. II, Chelsea, New York, 1956. MR 15, 501; 18, 188.
Bibliographic Information
- © Copyright 1975 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 204 (1975), 229-243
- MSC: Primary 55D15
- DOI: https://doi.org/10.1090/S0002-9947-1975-0380783-X
- MathSciNet review: 0380783