Some theorems on $(\textrm {CA})$ analytic groups
HTML articles powered by AMS MathViewer
- by David Zerling
- Trans. Amer. Math. Soc. 205 (1975), 181-192
- DOI: https://doi.org/10.1090/S0002-9947-1975-0364548-0
- PDF | Request permission
Abstract:
An analytic group $G$ is called $(CA)$ if the group of inner automorphisms of $G$ is closed in the Lie group of all (bicontinuous) automorphisms of $G$. We show that each non-$(CA)$ analytic group $G$ can be written as a semidirect product of a $(CA)$ analytic group and a vector group. This decomposition yields a natural dense immersion of $G$ into a $(CA)$ analytic group $H$, such that each automorphism of $G$ can be extended to an automorphism of $H$. This immersion and extension property enables us to derive a sufficient condition for the normal part of a semidirect product decomposition of a $(CA)$ analytic group to be $(CA)$.References
- Claude Chevalley, Theory of Lie groups. I, Princeton University Press, Princeton, N. J., 1946 1957. MR 0082628
- Morikuni Goto and Naoki Kimura, Semigroup of endomorphisms of a locally compact group, Trans. Amer. Math. Soc. 87 (1958), 359β371. MR 96746, DOI 10.1090/S0002-9947-1958-0096746-8
- Morikuni Goto, Analytic subgroups of $\textrm {GL}(n,\,\textbf {R})$, Tohoku Math. J. (2) 25 (1973), 197β199. MR 322099, DOI 10.2748/tmj/1178241378
- Morikuni Goto, Absolutely closed Lie groups, Math. Ann. 204 (1973), 337β341. MR 372118, DOI 10.1007/BF01354582
- G. Hochschild, The structure of Lie groups, Holden-Day, Inc., San Francisco-London-Amsterdam, 1965. MR 0207883
- G. Hochschild, The automorphism group of Lie group, Trans. Amer. Math. Soc. 72 (1952), 209β216. MR 45735, DOI 10.1090/S0002-9947-1952-0045735-2
- D. H. Lee and T. S. Wu, On $\textrm {CA}$ topological groups, Duke Math. J. 37 (1970), 515β521. MR 265508
- W. T. van Est, Dense imbeddings of Lie groups, Nederl. Akad. Wetensch. Proc. Ser. A. 54 = Indagationes Math. 13 (1951), 321β328. MR 0044530 β, Dense imbeddings of Lie groups. II, Nederl. Akad. Wettensch. Proc. Ser. A 55 = Indag. Math. 14 (1952), 255-274. MR 14, 135.
- W. T. van Est, Some theorems on ${\rm (CA)}$ Lie algebras. I, II, Nederl. Akad. Wetensch. Proc. Ser. A. 55 = Indagationes Math. 14 (1952), 546β557, 558β568. MR 0053091
Bibliographic Information
- © Copyright 1975 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 205 (1975), 181-192
- MSC: Primary 22E15
- DOI: https://doi.org/10.1090/S0002-9947-1975-0364548-0
- MathSciNet review: 0364548