Continua in which all connected subsets are arcwise connected
HTML articles powered by AMS MathViewer
- by E. D. Tymchatyn
- Trans. Amer. Math. Soc. 205 (1975), 317-331
- DOI: https://doi.org/10.1090/S0002-9947-1975-0365523-2
- PDF | Request permission
Abstract:
Let $X$ be a metric continuum such that every connected subset of $X$ is arcwise connected. Some facts concerning the distribution of local cutpoints of $X$ are obtained. These results are used to prove that $X$ is a regular curve.References
- B. Knaster and C. Kuratowski, A connected and connected im kleinen point set which contains no perfect subset, Bull. Amer. Math. Soc. 33 (1927), no. 1, 106–109. MR 1561328, DOI 10.1090/S0002-9904-1927-04326-9
- E. D. Tymchatyn, Continua whose connected subsets are arcwise connected, Colloq. Math. 24 (1971/72), 169–174, 286. MR 310848, DOI 10.4064/cm-24-2-169-174
- Gordon T. Whyburn, On the Existence of Totally Imperfect and Punctiform Connected Subsets in a Given Continuum, Amer. J. Math. 55 (1933), no. 1-4, 146–152. MR 1506952, DOI 10.2307/2371118
- G. T. Whyburn, Local separating points of continua, Monatsh. Math. Phys. 36 (1929), no. 1, 305–314. MR 1549688, DOI 10.1007/BF02307620
- G. T. Whyburn, Decompositions of Continua by Means of Local Separating Points, Amer. J. Math. 55 (1933), no. 1-4, 437–457. MR 1506978, DOI 10.2307/2371144
- G. T. Whyburn, Sets of local separating points of a continuum, Bull. Amer. Math. Soc. 39 (1933), no. 2, 97–100. MR 1562558, DOI 10.1090/S0002-9904-1933-05567-2
- G. T. Whyburn, Concerning points of continuous curves defined by certain im kleinen properties, Math. Ann. 102 (1930), no. 1, 313–336. MR 1512580, DOI 10.1007/BF01782349 —, Analytic topology, Amer. Math. Soc. Colloq. Publ., vol. 28, Amer. Math. Soc., Providence, R. I., 1942. MR 4, 86.
- L. E. Ward Jr., Partially ordered topological spaces, Proc. Amer. Math. Soc. 5 (1954), 144–161. MR 63016, DOI 10.1090/S0002-9939-1954-0063016-5
- L. Mohler, Cuts and weak cuts in metric continua, Proceedings of the University of Houston Point Set Topology Conference (Houston, Tex., 1971) Univ. Houston, Houston, Tex., 1971, pp. 5–8. MR 0410694
Bibliographic Information
- © Copyright 1975 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 205 (1975), 317-331
- MSC: Primary 54F20
- DOI: https://doi.org/10.1090/S0002-9947-1975-0365523-2
- MathSciNet review: 0365523