The geometric dimension of some vector bundles over projective spaces
HTML articles powered by AMS MathViewer
- by Donald M. Davis and Mark E. Mahowald
- Trans. Amer. Math. Soc. 205 (1975), 295-315
- DOI: https://doi.org/10.1090/S0002-9947-1975-0372854-9
- PDF | Request permission
Abstract:
We prove that in many cases the geometric dimension of the $p$-fold Whitney sum $p{H_k}$ of the Hopf bundle ${H_k}$ over quaternionic projective space $Q{P^k}$ is the smallest $n$ such that for all $i \leq k$ the reduction of the $i$th symplectic Pontryagin class of $p{H_k}$ to coefficients ${\pi _{4i - 1}}(({\text {R}}{P^\infty }/{\text {R}}{P^{n - 1}})\Lambda bo)$ is zero, where bo is the spectrum for connective KO-theory localized at 2. We immediately obtain new immersions of real projective space ${\text {R}}{P^{4k + 3}}$ in Euclidean space if the number of 1’s in the binary expansion of $k$ is between 5 and 8.References
- J. F. Adams, Quillen’s work on formal groups and complex cobordism, mimeographed lecture notes, Chicago, 1970.
D. W. Anderson, The real $K$-theory of classifying spaces, Proc. Nat. Acad. Sci. U.S.A. 51 (1964), 634-636.
- Donald Davis, Generalized homology and the generalized vector field problem, Quart. J. Math. Oxford Ser. (2) 25 (1974), 169–193. MR 356053, DOI 10.1093/qmath/25.1.169
- S. Gitler, Immersion and embedding of manifolds, Algebraic topology (Proc. Sympos. Pure Math., Vol. XXII, Univ. Wisconsin, Madison, Wis., 1970) Amer. Math. Soc., Providence, R.I., 1971, pp. 87–96. MR 0315726 S. Gitler and M. E. Mahowald, Obstruction theory and $K$-theory (mimeograph).
- S. Gitler and M. Mahowald, The geometric dimension of real stable vector bundles, Bol. Soc. Mat. Mexicana (2) 11 (1966), 85–107. MR 231367
- S. Gitler, M. Mahowald, and R. James Milgram, The nonimmersion problem for $RP^{n}$ and higher-order cohomology operations, Proc. Nat. Acad. Sci. U.S.A. 60 (1968), 432–437. MR 227997, DOI 10.1073/pnas.60.2.432
- Dale Husemoller, Fibre bundles, McGraw-Hill Book Co., New York-London-Sydney, 1966. MR 0229247
- I. M. James, Spaces associated with Stiefel manifolds, Proc. London Math. Soc. (3) 9 (1959), 115–140. MR 102810, DOI 10.1112/plms/s3-9.1.115
- Lawrence L. Larmore, Twisted cohomology theories and the single obstruction to lifting, Pacific J. Math. 41 (1972), 755–769. MR 353315 M. E. Mahowald, The metastable homotopy of ${S^n}$, Mem. Amer. Math. Soc. No. 72 (1967). MR 38 #5216.
- R. James Milgram, Immersing projective spaces, Ann. of Math. (2) 85 (1967), 473–482. MR 211412, DOI 10.2307/1970353
- John C. Moore, Some applications of homology theory to homotopy problems, Ann. of Math. (2) 58 (1953), 325–350. MR 59549, DOI 10.2307/1969791
- Duane Randall, Note on the generalized vector field problem, Bol. Soc. Mat. Mexicana (2) 17 (1972), 40–41. MR 334235
- B. J. Sanderson, Immersions and embeddings of projective spaces, Proc. London Math. Soc. (3) 14 (1964), 137–153. MR 165532, DOI 10.1112/plms/s3-14.1.137
- E. H. Spanier, Function spaces and duality, Ann. of Math. (2) 70 (1959), 338–378. MR 107862, DOI 10.2307/1970107
- George W. Whitehead, Generalized homology theories, Trans. Amer. Math. Soc. 102 (1962), 227–283. MR 137117, DOI 10.1090/S0002-9947-1962-0137117-6
Bibliographic Information
- © Copyright 1975 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 205 (1975), 295-315
- MSC: Primary 55F25; Secondary 57D20
- DOI: https://doi.org/10.1090/S0002-9947-1975-0372854-9
- MathSciNet review: 0372854