Smooth $Z_{p}$-actions on spheres which leave knots pointwise fixed
HTML articles powered by AMS MathViewer
- by D. W. Sumners
- Trans. Amer. Math. Soc. 205 (1975), 193-203
- DOI: https://doi.org/10.1090/S0002-9947-1975-0372893-8
- PDF | Request permission
Abstract:
The paper produces, via handlebody construction, a family of counterexamples to the generalized Smith conjecture; that is, for each pair of integers $(n,p)$ with $n \geq 2$ and $p \geq 2$ there are infinitely many knots $({S^{n + 2}},k{S^n})$ which admit smooth semifree ${Z_p}$-actions (fixed on the knotted submanifold $k{S^n}$ and free on the complement $({S^{n + 2}} - k{S^n}))$. This produces previously unknown ${Z_p}$-actions on $({S^4},k{S^2})$ for $p$ even, the one case not covered by the work of C. H. Giffen. The construction is such that all of the knots produced are equivariantly null-cobordant. Another result is that if a knot admits ${Z_p}$ -actions for all $p$, then the infinite cyclic cover of the knot complement is acyclic, and thus leads to an unknotting theorem for ${Z_p}$-actions.References
- Ralph H. Fox, Free differential calculus. III. Subgroups, Ann. of Math. (2) 64 (1956), 407–419. MR 95876, DOI 10.2307/1969592
- Ralph H. Fox, Two theorems about periodic transformations of the $3$-sphere, Michigan Math. J. 14 (1967), 331–334. MR 224089
- Charles H. Giffen, The generalized Smith conjecture, Amer. J. Math. 88 (1966), 187–198. MR 198462, DOI 10.2307/2373054
- C. McA. Gordon, On the higher-dimensional Smith conjecture, Proc. London Math. Soc. (3) 29 (1974), 98–110. MR 356073, DOI 10.1112/plms/s3-29.1.98
- M. A. Gutiérrez, On knot modules, Invent. Math. 17 (1972), 329–335. MR 321103, DOI 10.1007/BF01406239
- Wu-yi Hsiang, On the unknottedness of the fixed point set of differentiable circle group actions on spheres—P. A. Smith conjecture, Bull. Amer. Math. Soc. 70 (1964), 678–680. MR 169238, DOI 10.1090/S0002-9904-1964-11158-7
- J. F. P. Hudson, Concordance, isotopy, and diffeotopy, Ann. of Math. (2) 91 (1970), 425–448. MR 259920, DOI 10.2307/1970632
- Mitsuyoshi Kato, Higher dimensional $\textrm {PL}$ knots and knot manifolds, J. Math. Soc. Japan 21 (1969), 458–480. MR 248847, DOI 10.2969/jmsj/02130458
- Michel A. Kervaire, Les nœuds de dimensions supérieures, Bull. Soc. Math. France 93 (1965), 225–271 (French). MR 189052
- J. Levine, Unknotting spheres in codimension two, Topology 4 (1965), 9–16. MR 179803, DOI 10.1016/0040-9383(65)90045-5
- John W. Milnor, Infinite cyclic coverings, Conference on the Topology of Manifolds (Michigan State Univ., E. Lansing, Mich., 1967) Prindle, Weber & Schmidt, Boston, Mass., 1968, pp. 115–133. MR 0242163
- Y. Shinohara and D. W. Sumners, Homology invariants of cyclic coverings with application to links, Trans. Amer. Math. Soc. 163 (1972), 101–121. MR 284999, DOI 10.1090/S0002-9947-1972-0284999-X
- D. W. Sumners, Homotopy torsion in codimension two knots, Proc. Amer. Math. Soc. 24 (1970), 229–240. MR 253316, DOI 10.1090/S0002-9939-1970-0253316-7
- D. W. Sumners, Invertible knot cobordisms, Comment. Math. Helv. 46 (1971), 240–256. MR 290351, DOI 10.1007/BF02566842
- D. W. Sumners, Polynomial invariants and the integral homology of coverings of knots and links, Invent. Math. 15 (1972), 78–90. MR 292062, DOI 10.1007/BF01418645
- A. M. Vinogradov and M. S. Kušel′man, The generalized Smith conjecture in dimension four, Sibirsk. Mat. Ž. 13 (1972), 52–62 (Russian). MR 0298648
- Friedhelm Waldhausen, Über Involutionen der $3$-Sphäre, Topology 8 (1969), 81–91 (German). MR 236916, DOI 10.1016/0040-9383(69)90033-0
- E. C. Zeeman, Twisting spun knots, Trans. Amer. Math. Soc. 115 (1965), 471–495. MR 195085, DOI 10.1090/S0002-9947-1965-0195085-8
Bibliographic Information
- © Copyright 1975 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 205 (1975), 193-203
- MSC: Primary 57E25
- DOI: https://doi.org/10.1090/S0002-9947-1975-0372893-8
- MathSciNet review: 0372893