SPACES OF VECTOR MEASURES

BY

A. KATSARAS(1)

ABSTRACT. Let $C_{rc} = C_{rc}(X, E)$ denote the space of all continuous functions f, from a completely regular Hausdorff space X into a locally convex space E, for which $f(X)$ is relatively compact. As it is shown in [8], the uniform dual C_{rc}' of C_{rc} can be identified with a space $M(B, E')$ of E'-valued measures defined on the algebra of subsets of X generated by the zero sets. In this paper the subspaces of all σ-additive and all τ-additive members of $M(B, E')$ are studied. Two locally convex topologies β and β_1 are considered on C_{rc}. They yield as dual spaces the spaces of all τ-additive and all σ-additive members of $M(B, E')$ respectively. In case E is a locally convex lattice, the σ-additive and τ-additive members of $M(B, E')$ correspond to the σ-additive and τ-additive members of C_{rc} respectively.

1. Definitions and preliminaries. Let X be a completely Hausdorff space and let E be a real locally convex Hausdorff space. Let $C^b = C^b(X)$ denote the space of all bounded continuous real-valued functions on X. We will denote by $C_{rc} = C_{rc}(X, E)$ the space of all continuous functions f, from X into E, for which $f(X)$ is relatively compact. Clearly C_{rc} consists of those continuous functions f, from X into E, that have continuous extensions \tilde{f} to all of the Stone-Čech compactification βX of X. For an f in C^b we will denote also by \tilde{f} its unique continuous extension to all of βX. The zero sets in X are defined to be the kernels of real continuous functions on X. The complement of a zero set is called a cozero set.

Let Σ be an algebra of subsets of X and let m be a finitely-additive bounded real set function on Σ. We say that m is regular with respect to a subfamily Σ_1 of Σ if the following condition is satisfied: For every F in Σ and every $\epsilon > 0$ there exists G in Σ_1 such that $G \subset F$ and $|m(H)| < \epsilon$ for all H in Σ which are contained in $F - G$.
Let now \(B = B(X) \) and \(Ba = Ba(X) \) be, respectively, the algebra and \(\sigma \)-algebra of subsets of \(X \) generated by the zero sets. The collection of Borel subsets of \(X \) will be denoted by \(Bo = Bo(X) \). Let \(M(X) \) be the space of all bounded, \(\sigma \)-algebra of subsets of \(X \) generated by the zero sets. The collection of Borel subsets of \(X \) will be denoted by \(Bo = Bo(X) \). Let \(M(X) \) be the space of all bounded, finitely-additive, real-valued, set functions on \(B(X) \) which are regular with respect to the family of zero sets. The space of all bounded, countably-additive, real-valued, regular (with respect to the zero sets) measures on \(Ba \) will be denoted by \(M_\sigma(Ba) \). By \(M_\tau(Bo) \) we will denote the space of all real, regular with respect to the closed sets, Borel measures \(m \) on \(Bo \) such that \(|m|(Z_\alpha) \to 0 \) for each net \(\{Z_\alpha\} \) of zero sets which decreases to the empty set (see Varadarajan [17] or Aleksandrov [1]). Note that an element \(m \) of \(M_\tau(Bo) \) is not necessarily regular with respect to the zero sets. However its restriction to \(Ba \) is an element of \(M_\sigma(Ba) \) by Varadarajan [16, p. 171, Theorem 19]. The subspaces of all \(\sigma \)-additive and \(\tau \)-additive members of \(M(X) \) will be denoted by \(M_\sigma(X) \) and \(M_\tau(X) \) respectively (see Varadarajan [17] for the definition of \(\sigma \)-additive and \(\tau \)-additive measures).

For \(m \) in any one of the spaces \(M(X) \), \(M_\sigma(Ba) \), \(M_\tau(Bo) \), the positive part \(m^+ \), the negative part \(m^- \), and the variation \(|m| \) are understood as, for example, in Aleksandrov [1].

Let now \(\{p: p \in \mathbb{I}\} \) be a family of continuous seminorms on \(E \) generating the topology of \(E \). We choose this family so that it is directed, i.e., given \(p_1, p_2 \) in \(\mathbb{I} \) there exists \(p \in \mathbb{I} \) with \(p \geq p_1, p_2 \). For each \(p \) in \(\mathbb{I} \) we consider the space \(M_p(B, E') \) of all finitely-additive functions \(m: B(X) \to E' \) (\(E' \) is the topological dual of \(E \)) such that the following two conditions are satisfied:

1. For each \(s \in E \), the function \(ms: B \to \mathbb{R}, (ms)(F) = m(F)s, \) is in \(M(X) \).
2. \(\|m\|_p = m_p(X) < \infty \), where for \(F \) in \(B \) we define \(m_p(F) = \sup \{ \sum m(F_i)s_i \} \) the supremum being taken over all finite \(B \)-partitions \(\{F_i\} \) of \(F \) (that is partitions into sets in \(B \)) and all finite collections \(\{s_i\} \) in \(E \) with \(p(s_i) \leq 1 \).

The set function \(m_p \) belongs to \(M(X) \). Indeed it is easy to see that \(m \) is finitely-additive and bounded. For the regularity, consider an \(F \) in \(B \) and let \(\varepsilon > 0 \) be given. By definition there exist a finite \(B \)-partition \(\{F_i\} \) of \(F \) and \(s_i \in E \), with \(p(s_i) \leq 1 \), such that \(\sum m(F_i)s_i > m_p(F) - \varepsilon \). By the regularity of \(ms \), we can choose for each \(i \) a zero set \(Z_i \subset F_i \) such that \(\sum m(Z_i)s_i > m_p(F) - \varepsilon \). The zero set \(Z = \bigcup Z_i \) is contained in \(F \). Moreover we have \(m_p(Z) \geq \sum m(Z_i)s_i > m_p(F) - \varepsilon \). This proves the regularity of \(m_p \). Set \(M(B, E') = \bigcup_{p \in \mathbb{I}} M_p(B, E') \).

Let \(\sigma \) denote the uniform topology on \(C_{rc} \), i.e., the locally convex topology generated by the family of seminorms \(\{ \|f\|_p: p \in \mathbb{I}\} \), where \(\|f\|_p = \sup \{ p(f(x)) : x \in X \} \). In [8] the author defines the integral of a function \(f \) in \(C_{rc} \) with respect to a member of \(M(B, E') \). The integration process employed is a generalization of the process of Aleksandrov to the vector case. It is one of the many integration processes defined by McShane [12]. Every element \(m \) of
$M(B, E')$ generates a linear functional ϕ_m on C_{rc} by $\phi_m(f) = \int_X f dm$, $f \in C_{rc}$.

The proof of the following theorem can be found in [8].

Theorem 1.1. For each $m \in M(B, E')$, ϕ_m is an element of $(C_{rc}, \sigma)' = C_{rc}'$. Moreover, the map $m \rightarrow \phi_m$, from $M(B, E')$ into C_{rc}, is linear, one-to-one, and onto.

Theorem 1.2. If $m \in M_p(B, E')$, then $\|\phi_m\| = \|m\|_p$, where $\|\phi_m\|_p = \sup \{|\phi_m(f)| : f \in C_{rc}, \|f\|_p \leq 1\}$.

Proof. It is clear from the definitions that $\|f dm\| \leq \int p o f dm_p \leq \|f\|_p \|m\|_p$ for all C_{rc} and hence $\|\phi_m\|_p \leq \|m\|_p$. On the other hand, let $\varepsilon > 0$ be given. By the definition of $\|m\|_p$, there exist a finite B-partition $\{F_i\}$ of X and $s_i \in E$ with $p(s_i) \leq 1$ such that $\|m\|_p < \Sigma m(F_i) s_i + \varepsilon$. By regularity there are zero sets $Z_i \subset F_i$ such that $\|m\|_p < \Sigma m(Z_i) s_i + \varepsilon$. Again by the regularity of $m s_i$, we can find pairwise disjoint cozero sets $\{U_i\}$, $Z_i \subset U_i$, such that

$$\sum |m s_i|(U_i - Z_i) < \varepsilon.$$

For each i choose h_i in C_b, $0 < h_i \leq 1$, such that $h_i = 1$ on Z_i and $h_i = 0$ on $X - U_i$. Set $h = \Sigma h_i s_i$. Then $\|h\|_p \leq 1$ and so $\|h dm\| \leq \|\phi_p\|$. But

$$\left|\int h dm\right| \geq \left|\sum \int_{Z_i} s_i dm\right| - \left|\sum \int_{U_i - Z_i} h_i d(m s_i)\right| \geq \sum m(Z_i) s_i - \varepsilon \geq \|m\|_p - 2\varepsilon.$$

Since $\varepsilon > 0$ was arbitrary we get that $\|\phi_m\|_p \geq \|m\|_p$ and this completes the proof.

In case E is a locally convex lattice, (C_{rc}, σ) becomes also a locally convex lattice under the pointwise ordering (that is, we define $f \geq g$ iff $f(x) \geq g(x)$ for all $x \in X$). We define an order relation \geq on $M(B, E')$ by $m_1 \geq m_2$ iff $m_1(F) \geq m_2(F)$ for all F in B. Note that E' is a lattice when ordered by the cone $\{\phi \in E' : \phi(s) \geq 0 \text{ when } s \geq 0\}$. As it is shown in [8], $M(B, E')$ becomes a lattice and the map $m \rightarrow \phi_m$, of Theorem 1.1, is lattice preserving.

2. Extensions of members of $M(B, E')$. Let $p \in I$. We define $M_{a, p}(Ba, E')$ to be the set of all functions $m : Ba \rightarrow E'$ such that the following two conditions are satisfied:

1. For each s in E the function $m s : Ba \rightarrow R$, $(m s)(F) = m(F) s$, is in $M_s(Ba)$.

2. $m_p(X) < \infty$ where, for each F in Ba, we define $m_p(F) = \sup \Sigma m(F_i) s_i$, where the supremum is taken over all finite Ba-partitions $\{F_i\}$ of F and all finite collections $\{s_i\}$ in E with $p(s_i) \leq 1$.

Lemma 2.1. If $m \in M_{a, p}(Ba, E')$, then $m_p \in M_a(Ba)$.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
Proof. It is easy to see that \(m_p \) is bounded monotone and finitely-additive.

Let \(\{F_n\} \) be a sequence of pairwise Baire sets (i.e., sets in \(\mathcal{B}a \)) and set \(F = \bigcup F_n \).

Since \(m_p \) is monotone and finitely-additive, we have \(m_p(F) \geq m_p(\bigcup F_i) = \sum m_p(F_i) \) for each \(n \). Hence \(m_p(F) \geq \sum m_p(F_i) \). On the other hand, let \(\varepsilon > 0 \) be arbitrary. There exist a \(\mathcal{B}a \)-partition \(G_1, \ldots, G_N \) of \(F \) and \(s_i \in E, p(s_i) \leq 1 \), such that \(\sum m(G_i)s_i > m_p(F) - \varepsilon \). Since \(m(s_i) \) is countably additive we have

\[
\sum_{n=1}^{\infty} \sum_{i=1}^{N} |m(G_i \cap F_n)s_i| \leq \sum_{n=1}^{\infty} m_p(F_n) \leq m_p(F) < \infty.
\]

Hence

\[
m_p(F) - \varepsilon \leq \sum_{i=1}^{N} m(G_i)s_i = \sum_{i=1}^{N} \sum_{n=1}^{\infty} m(G_i \cap F_n)s_i = \sum_{n=1}^{\infty} m(G_i \cap F_n)s_i \leq \sum_{n=1}^{\infty} m_p(F_n) \leq m_p(F).
\]

Since \(\varepsilon > 0 \) was arbitrary we conclude that \(m_p(F) = \sum m_p(F_n) \) and so \(m_p \) is countably-additive. Finally, the proof of the regularity of \(m_p \) is similar to that of the case of a member of \(M_p(B, E') \).

Next we define \(M_{r,p}(B, E') \) to be the set of all \(m: J \rightarrow E' \) having the following two properties:

(a) For each \(s \) in \(E \), \(ms \) belongs to \(M_r(J) \).

(b) \(m_p(X) < \infty \), where for each \(F \) in \(J \) the \(m_p(F) \) is defined by \(m_p(F) = \sup \{ \sum m(F_i) s_i \} \) the supremum being taken over all finite \(\mathcal{B}o \)-partitions of \(F \) and all finite collections \(\{ s_i \} \) in \(F \) with \(p(s_i) \leq 1 \).

Lemma 2.2. If \(m \in M_{r,p}(J, E') \), then \(m_p \in M_r(J) \).

Proof. By using an argument similar to that of 2.1, we show that \(m_p \) is a bounded, countably-additive, regular with respect to the closed sets, \(\mathcal{B}o \)-measure on \(X \). To complete the proof we need to show that \(m_p \) is \(\tau \)-additive. To this end, consider an arbitrary net \(\{ Z_\alpha \} \) of zero sets decreasing to the empty set. For each \(\alpha \) there exists a zero set \(\tilde{Z}_\alpha \in \beta X \) such that \(Z_\alpha = \tilde{Z}_\alpha \cap X \).

Define \(\tilde{m} : \mathcal{B}o(\beta X) \rightarrow E' \) by \(\tilde{m}(F) = m(F \cap X) \). For each \(s \in E \), the function \(\tilde{m}s : \mathcal{B}o(\beta X) \rightarrow R, (\tilde{m}s)(F) = (ms)(F \cap X) \), is a regular \(\mathcal{B}o \)-measure on \(\beta X \) since \(ms \) is \(\tau \)-additive (see Knowles [11]). It follows now easily that \(m \in M_{r,p}(\mathcal{B}o(\beta X), E') \). Moreover \(\tilde{m}_p(F) = m_p(F \cap X) \) for each \(\mathcal{B}o \) set \(F \) in \(\beta X \).

Indeed it is clear that \(\tilde{m}_p(F) \leq m_p(F \cap X) \). On the other hand, if \(\{ G_i \} \) is a finite \(\mathcal{B}o \) partition of \(F \cap X \), then there are pairwise disjoint \(\mathcal{B}o \) sets \(V_i \)
in βX, which we may choose contained in F, such that $G_1 = V_i \cap X$. For $s_i \in E$ with $p(s_i) < 1$, we have $\bar{m}_p(F) \geq |\Sigma \bar{m}(V_i)s_i| = |\Sigma m(G_i)s_i|$. This shows that $\bar{m}_p(F) \geq m_p(F \cap X)$ and so $m_p(F) = m_p(F \cap X)$. Let now $D = \{Z \subset \beta X: Z$ is an intersection of a finite number of \bar{Z}_α's $\}$. Then D is directed downwards to $G = \bigcap \bar{Z}_\alpha$. Hence $\bar{m}_p(G) = \lim_{Z \in D} \bar{m}_p(Z)$. Since $G \cap X = \emptyset$, we have $\bar{m}_p(G) = 0$. Thus given $\epsilon > 0$ there exists $Z = \bar{Z}_{\alpha_1} \cap \cdots \cap \bar{Z}_{\alpha_n}$ in D such that $\bar{m}_p(Z) < \epsilon$. If $\alpha > \alpha_1, \cdots, \alpha_n$, we have $m_p(Z_\alpha) \leq m_p(Z \cap X) = \bar{m}_p(Z) < \epsilon$. This completes the proof.

Theorem 2.3. If $m \in M_{a,p}(Ba, E') \setminus \{m \in M_{r,p}(Bo, E')\}$, then $m_p(X) = \sup \{\|f\|_{L^p}: f \in C_{rc}, \|f\|_p \leq 1\}$.

Proof. Let $d = \sup \{\|f\|_{L^p}: f \in C_{rc}, \|f\|_p \leq 1\}$. To prove the result in the case of an m in $M_{a,p}(Ba, E')$ one can use the same argument as the one used in the proof of Theorem 1.2. We will prove the result for an m in $M_{r,p}(Bo, E')$. Since $\|f\|_{L^p} < \|f\|_{L^p} m_p(X)$, it follows that $d < m_p(X)$. To prove the reverse inequality, consider an arbitrary $\epsilon > 0$. Define \bar{m} on $Bo(\beta X)$ by $\bar{m}(F) = m(F \cap X)$. As we have seen in the proof of Lemma 2.2, we have $\bar{m} \in M_{r,p}(Bo(\beta X), E')$ and $\bar{m}_p(F) = m_p(F \cap X)$ for each Borel set F in βX. By the definition of \bar{m}_p, there exist a partition $\{F_1, \cdots, F_n\}$ of βX, $F_i \in Bo(\beta X)$, and s_i, \cdots, s_n in E, $p(s_i) < 1$, such that $\sum \bar{m}(F_i)s_i > m_p(\beta X) - \epsilon = m_p(X) - \epsilon$. By regularity there are closed sets $G_i \subset \beta X$, $G_i \subset F_i$, such that $\sum \bar{m}(G_i)s_i > m_p(X) - \epsilon$. Next we choose pairwise disjoint open sets O_i in βX, $G_i \subset O_i$, such that $|\bar{m}(O_i - G_i)| < \epsilon/n$. For each i, $1 \leq i \leq n$, there is an h_i in $C^0(X)$, $0 < h_i \leq 1$, $h_i = 1$ on G_i and $h_i = 0$ in the complement of O_i. Set $h = \Sigma h_is_i$. Then $\|h\|_p \leq 1$ and

$$\int_X h \ dm = \int_{\beta X} \hat{h} \ dm = \sum \bar{m}(G_i)s_i + \sum_{O_i \cap \bar{G}_i} \hat{h}_i d(\bar{m}s_i) > m_p(X) - 2\epsilon.$$

Thus $d > m_p(X) - 2\epsilon$ and the result follows since $\epsilon > 0$ was arbitrary.

Lemma 2.4. Let $m \in M_{r,p}(Bo, E')$ and $\mu = m|_{Ba}$ (= restriction of m to Ba). Then (a) $\mu \in M_{a,p}(Ba, E')$, (b) $\mu_p = m_p|_{Ba}$.

Proof. Part (a) is clear because the restriction to Ba of an element of $M_r(Bo)$ is in $M_{a}(Ba)$. For (b) we first observe that $\mu_p(X) = m_p(X)$ by 2.3 since $\int f \ dm = \int f \ d\mu$ for all f in C_{rc}. It is also clear that $\mu_p(F) \leq m_p(F)$ for all F in Ba. Thus (b) follows.

Set $M_o(Ba, E') = \bigcup \{M_{a,p}(Ba, E'): p \in I\}$ and define $M_r(Bo, E')$ analogously.

Let $M_o(B, E')$ be the subspace of $M(B, E')$ consisting of all $m \in M(B, E')$ for which $ms \in M_o(X)$ for all s in E. We define $M_r(B, E')$ similarly. We will call
the elements of $M_o(B, E')$ [$M_r(B, E')$] the σ-additive (τ-additive) members of $M(B, E')$. The next theorem shows that the σ-additive members of $M(B, E')$ are exactly the ones that have extensions to members of $M_o(Ba, E')$.

Theorem 2.5. Let $m \in M(B, E')$. Then m is σ-additive iff there exists a μ in $M_o(Ba, E')$ with $m = \mu|_B$. Moreover, if such a μ exists it is unique.

Proof. Clearly $\mu|_B$ is in $M_o(B, E')$ for each μ in $M_o(Ba, E')$. Moreover if λ is another member of $M_o(Ba, E')$ such that $\lambda|_B = \mu|_B$, then $\lambda s|_B = \mu s|_B$ for each $s \in E$. It follows that $\lambda s = \mu s$ by the regularity of λs and μs. This, being true for all s in E, implies that $\mu = \lambda$. Assume next that $m \in M_o(B, E')$. For each $s \in E$, $ms \in M_o(X)$. Hence, for each $s \in E$, there exists a unique extension μ_s of ms to a member of $M_o(Ba)$ such that $\|ms\| = \|\mu_s\|$ (see Varadarajan [17]). For an F in Ba, we define $\mu(F) : E \rightarrow R$, by $\mu(F)s = \mu_s(F)$. Clearly $\mu(F)$ is linear. Moreover, if $m \in M_p(B, E')$, then

$$|\mu(F)s| = |\mu_s(F)| \leq \|\mu_s\| = \|ms\| \leq p(s)\|m\|_p.$$

Hence $\mu(F) \in E'$. In this way we define a map $\mu : Ba \rightarrow E'$ such that $\mu s = \mu s \in B_o(Ba)$ for all $s \in E$. To finish the proof it remains to show that $\|\mu\|_p < \infty$. To this end, consider an arbitrary Ba-partition F_1, \ldots, F_n of X and let $s_i \in E$ with $p(s_i) \leq 1$. For $e > 0$, there exist zero sets $Z_i, \ldots, Z_n, Z_i \subset F_i$, such that $|\mu s_i|(F_i - Z_i) < e/n$. Thus

$$|\sum \mu_s(F_i)s_i| + e = |\sum \mu s_i s_i| + e \leq p(s)\|m\|_p + e.$$

It follows that $\|\mu\|_p \leq \|m\|_p$ and the proof is complete.

We have an analogous theorem for $M_r(Bo, E')$.

Theorem 2.6. Let $m \in M(B, E')$. Then m is τ-additive iff there exists a unique $\mu \in M_r(Bo, E')$ such that $m = \mu|_B$.

Proof. Clearly $\mu|_B \in M_r(B, E')$ for each $\mu \in M_r(Bo, E')$. Also, if μ_1, μ_2 are both in $M_r(Bo, E')$ with $\mu_1|_B = \mu_2|_B$, then $\mu_1 s|_B = \mu_2 s|_B$ for each s in E. By Kirk [9, Theorem 1.14], we have $\mu_1 s = \mu_2 s$. This, being true for all s in E, implies that $\mu_1 = \mu_2$. Assume now that $m \in M_r(B, E')$. Let $C(\beta X, E)$ denote the space of all continuous functions from βX into E.

Clearly $C(\beta X, E) = \{ \tilde{f} : f \in C_{rc} \}$. Define ϕ on $C(\beta X, E)$ by $\phi(\tilde{f}) = \tilde{f} f dm$. Then ϕ is continuous with respect to the uniform topology on $C(\beta X, E)$. Hence, by 1.1, there exists $\tilde{m} \in M_p(B(\beta X), E')$ such that $\phi(\tilde{f}) = \tilde{f} \tilde{m}$ for all f in C_{rc}. Since each $\tilde{ms}, s \in E$, is τ-additive it has a unique norm-preserving extension to a member $\tilde{\mu}_s$ of $M_r(Bo(\beta X))$ (see Kirk [9]). For each Borel set F in βX, we define
It is easy to see that \(\mu(F) \in E' \). In this way we get a map \(\tilde{\mu} : Bo(\beta X) \to E' \). We will show that \(\tilde{\mu} \in M_{\tau,p}(Bo(\beta X), E') \). Since \(\tilde{\mu} s = \mu_s(F) \), it only remains to show that \(\|\tilde{\mu}\|_p < \infty \). To this end consider an arbitrary partition \(F_1, \ldots, F_n \) of \(\beta X \) into Borel sets and let \(s_i \in E \) with \(p(s_i) \leq 1 \). There are closed sets \(G_1, \ldots, G_n \) in \(\beta X \), \(G_i \subset F_i \), such that \(|\mu s_i|(F_i - G_i) < \epsilon/n \) (\(\epsilon > 0 \) arbitrary). Since \(G_1, \ldots, G_n \) are pairwise disjoint compact sets and since the cozero sets form a base for the open sets, there are pairwise disjoint cozero sets \(U_1, \ldots, U_n \) in \(\beta X \), \(G_i \subset U_i \), such that \(|\mu s_i|(U_i - G_i) < \epsilon/n \). Thus

\[
\left| \sum \mu(F_i)s_i \right| \leq \left| \sum \mu(U_i)s_i \right| + 2\epsilon = \left| \sum m(U_i)s_i \right| + 2\epsilon \leq m_p(\beta X) + 2\epsilon.
\]

It follows that \(\tilde{\mu}_p(\beta X) \leq m_p(\beta X) \) and so \(\tilde{\mu} \) is in \(M_{\tau,p}(Bo(\beta X), E') \). Next we show that \(\tilde{\mu}_p(F) = 0 \) for each Borel set \(F \) in \(\beta X \) which is disjoint from \(X \). By regularity it suffices to show that \(\mu(F)s = 0 \) for each \(s \in E \) and each closed set \(F \) in \(\beta X \) disjoint from \(X \). So, let \(F \) be such a set and let \(s \in E \). There exists an open set \(0 \) in \(\beta X \), \(F \subset 0 \), such that \(|\mu s|(0 - F) < \epsilon \) (\(\epsilon > 0 \) arbitrary). There exists a net \(\{f_\alpha\} \) in \(C^b(X) \), \(f_\alpha \downarrow 0, f_\alpha = 1 \) on \(F \) and \(f_\alpha = 0 \) on the complement of \(0 \), \(0 < f_\alpha \leq 1 \). Since \(ms \) is \(\tau \)-additive, we have \(\lim f_\alpha d(ms) = 0 \). Hence there exists \(\alpha \) such that \(|f_\alpha d(ms)| < \epsilon \). Thus

\[
\left| \int f_\alpha s d\mu \right| = \left| \int f_\alpha s dm \right| < \epsilon.
\]

Therefore \(|\mu(F)s| \leq 2\epsilon \). Since \(\epsilon > 0 \) was arbitrary, we conclude that \(\mu(F)s = 0 \) which proves the claim: Next we define \(\mu : Bo(X) \to E' \) by \(\mu(F \cap X) = \tilde{\mu}(F) \) for each \(F \in Bo(\beta X) \). If \(F_1, F_2 \) are Borel sets in \(\beta X \) such that \(F_1 \cap X = F_2 \cap X \), then both \(F_1 - F_2 \) and \(F_2 - F_1 \) are disjoint from \(X \) and so \(\mu(F_1) = \mu(F_1 \cap F_2) = \mu(F_2) \). Hence \(\mu \) is well defined. It is easy now to see that \(\mu \in M_{\tau,p}(Bo(\beta X), E') \). Moreover, it is clear that \(ff d\mu = \int f d\tilde{\mu} = \int f d\tilde{m} = \int f dm \) for all \(f \) in \(C_{rc} \). Let \(m_1 = \mu_{|B} \). Then \(m_1 \in M(B, E') \) and \(ff dm = \int f dm_1 \) for each \(f \) in \(C_{rc} \). By Theorem 1.1, \(m = m_1 \) and hence \(\mu \) is an extension of \(m \). The theorem is proved.

The next theorem gives another characterization of the \(\sigma \)-additive and \(\tau \)-additive members of \(M(B, E') \). This characterization will be useful later. Let \(m \in M(B, E') \). Define \(\phi \) on \(C(\beta X, E) \) by \(\phi(f) = \int f dm, f \in C_{rc} \). Then \(\phi \) is continuous with respect to the uniform topology on \(C(\beta X, E) \). Since \(M(\beta X) = M_{\tau}(\beta X) \), there exists \(\tilde{m} \in M_{\tau,p}(Bo(\beta X), E') \) such that \(\phi(f) = \int f \tilde{m} \) for each \(f \) in \(C_{rc} \).
Theorem 2.7. (a) \(m \in M_o(B, E') \) iff \(\widetilde{m}_p(Z) = 0 \) for each zero set \(Z \) in \(\beta X \) which is disjoint from \(X \).

(b) \(m \) is \(\tau \)-additive iff \(\widetilde{m}_p(F) = 0 \) for each closed set \(F \) in \(\beta X \) which is disjoint from \(X \).

Proof. (a) Assume that \(m \) is \(\sigma \)-additive. Let \(s \in E \). For each \(f \in C^b(X) \) we have \(\int f \, d(ms) = \int f \, ds \, dm = \int f \, ds \, dm = \int f \, d(ms) \). Since \(ms \) is \(\sigma \)-additive, we have that \((ms)(F) = 0 \) for each Baire set \(F \) in \(\beta X \) which is disjoint from \(X \) (see Knowles [11, Theorem 2.1]). Let \(\widetilde{\mu} \) be the restriction of \(\widetilde{m} \) to \(Ba(\beta X) \). Then \(\mu \in M_{\sigma, p}(Ba(\beta X), E') \) and \(\widetilde{m}_p = \widetilde{m}_p \restriction Ba(\beta X) \). By what we proved, \(\widetilde{m}_p(F) = \widetilde{\mu}_p(F) = 0 \) for each Baire set \(F \) in \(\beta X \) which is disjoint from \(X \). Conversely, assume that \(\widetilde{m}_p(Z) = 0 \) for each zero set \(Z \) in \(\beta X \) disjoint from \(X \). By regularity \(\widetilde{\mu}_p(F) = 0 \) for each Baire set \(F \) disjoint from \(X \). Define \(\mu : Ba(X) \rightarrow E' \) by \(\mu(F \cap X) = \widetilde{\mu}_p(F) \) for each Baire set \(F \) in \(\beta X \). This gives us a well-defined element of \(M_{\sigma, p}(Ba(X), E') \). Moreover, if \(m_1 = \mu \restriction B(X) \), then \(\int f \, dm_1 = \int f \, d\mu = \int f \, d\mu = \int f \, dm = \int f \, ds \) for all \(f \) in \(C_{rc} \). Thus \(m_1 = m \) and hence \(m \) is \(\sigma \)-additive by 2.5.

(b) The proof is similar to that of (a).

Theorem 2.8. If we consider on \(C'_{rc} = M(B, E') \) the weak topology \(\sigma(C'_{rc}, C_{rc}) \), then \(M_o(B, E') \) is sequentially closed.

Proof. Let \(\{m_n\} \) be a sequence of elements of \(M_o(B, E') \), \(m \in M(B, E') \), and assume that \(m_n \rightharpoonup m \). Let \(s \in E \). For each \(f \in C^b(X) \) we have

\[
\int f \, d(m_n s) = \int f s \, dm_n \rightharpoonup \int f s \, dm = \int f \, d(ms).
\]

Thus \(m_n s \rightharpoonup ms \) in the \(\sigma(M(X), C^b) \) topology. By Aleksandrov [1], \(ms \) is \(\sigma \)-additive. This, being true for all \(s \in E \), implies that \(m \) is \(\sigma \)-additive.

3. A weighted type topology on \(C_{rc} \). Let \(V \) be a family of bounded continuous real-valued functions on \(X \). Assume that \(V \) has the following two properties:

(1) For each \(x \) in \(X \) there exists \(h \in V \) with \(h(x) \not= 0 \).

(2) Given \(u, v \) in \(V \) and a positive number \(d \), there exists \(w \) in \(V \) with \(|w| \geq du, dv \) (pointwise). We will denote by \(w_V \) the locally convex topology on \(C_{rc} \) generated by the family of seminorms \(\{\| \cdot \|_{p, h} : p \in I, h \in V\} \) where \(\| \cdot \|_{p, h} \) is defined on \(C_{rc} \) by

\[
\| f \|_{p, h} = \sup \{p(h(x)f(x)) : x \in X\} = \|hf\|_p.
\]

It is clear that \(w_V \) has a base at zero consisting of all sets of the form \(\{f \in C_{rc} : \|hf\|_p \leq 1\} \) where \(h \in V \) and \(p \in I \). It is also clear that \(w_V \) is Hausdorff and
that $w_\nu \leq \sigma$. Hence $(C_{rc}, w_\nu)' \subset (C_{rc, \sigma})' = M(B, E')$. We will identify the dual space of (C_{rc}, w_ν). We begin with an easily established lemma.

Lemma 3.1. Let $m \in M(B, E')$ and $h \in C^b$. For each F in B we define $\mu(F)$ on E by $\mu(F)s = \int_F hds(m)$. Then $\mu \in M(B, E')$ and $\int f d\mu = \int fh \, dm$ for each f in C_{rc}.

We denote the element $\mu \in M(B, E')$, defined in 3.1, by hm. Let

$$V \cdot M(B, E') = \{hm: h \in V, m \in M(B, E')\}.$$

We will prove the following.

Theorem 3.2. The space $(C_{rc}, w_\nu)'$ is isomorphic to the space $V \cdot M(B, E')$ and the isomorphism $\phi \mapsto m$ is given by the formula, where $\phi(f) = \int f \, dm$ for all $f \in C_{rc}$.

Set $H = (C_{rc}, w_\nu)'$.

Lemma 3.3. If $h \in V$ and $m \in M_p(B, E')$, then hm gives an element of the dual space of (C_{rc}, w_ν).

Proof. Set $\mu = hm$. The set $W = \{f: \|fh\|_p < 1\}$ is a w_ν-neighborhood of zero. Moreover, if $f \in W$, then

$$|\int f \, d\mu| = |\int fh \, dm| \leq \|fh\|_p \|m\|_p \leq \|m\|_p.$$

This completes the proof.

Lemma 3.4. Let $h \in V$ and define $T_h = T: C_{rc} \to C_{rc}, Tf = hf$. Then T is $o(C_{rc}, H) - o(C_{rc}, C_{rc})$ continuous.

Moreover, if T' is the adjoint of T and if $p \in I$, then $T'(B_p^\circ) = W_p^\circ$, where $B_p = \{f \in C_{rc}: \|f\|_p \leq 1\}, W_p = T^{-1}(B_p^\circ), B_p^\circ$ the polar of B_p with respect to the pair (C_{rc}, C_{rc}), and W_p° the polar of W_p with respect to the pair (C_{rc}, H).

Proof. Let $\{f_\alpha\}$ be a net in C_{rc} converging to zero in the $o(C_{rc}, H)$ topology. Let $m \in M(B, E')$. In view of 3.3 we have $\int f_\alpha d(hm) \to 0$. Thus $\int hf_\alpha \, dm \to 0$ which shows that $Tf_\alpha \to 0$ in the $o(C_{rc}, C_{rc})$ topology. Thus T is $o(C_{rc}, H) - o(C_{rc}, C_{rc})$ continuous. Therefore T' exists and $T'(C_{rc}) \subset H$. Also T' is $o(C_{rc}, C_{rc}) - o(H, C_{rc})$ continuous. The set B_p is clearly σ-closed. Since B_p is convex and since σ and $o(C_{rc}, C_{rc})$ are both compatible with the pair $\langle C_{rc}, C_{rc}\rangle$, B_p is $o(C_{rc}, C_{rc})$ closed. Also B_p is balanced. Thus $B_p = B_p^\circ$ by the bipolar theorem (see Schaefer [14, p. 126]). Let $W = [T'(B_p^\circ)]^\circ$. If $f \in W$ and $m \in B_p^\circ$, then $\|m, Tf\| = \|T'm, f\| \leq 1$. This shows that $Tf \in B_p^\circ = B_p$. Hence $W \subset W_p$. On the other hand, if $f \in W_p$ and $m \in B_p^\circ$, then
Thus $W_p \subseteq W$ and so $W = W_p$. The set B_p° is $\sigma(C_{rc}^\circ, C_{rc})$ compact by the Alaoglu theorem (see Köthe [10, p. 248]). Hence $T'(B_p^\circ)$ is $\sigma(H, C_{rc})$ compact. Also $T'(B_p^\circ)$ is convex and balanced. Therefore, by the bipolar theorem, $T'(B_p^\circ) = [T'(B_p^\circ)]^{oo} = W_p^\circ$. The lemma is proved.

Lemma 3.5. If $\phi \in (C_{rc}^\circ, w_V)'$, then there exists $h \in V$, $m \in M(B, E')$ such that $\phi(f) = \text{ff } d(hm)$ for all $f \in C_{rc}^\circ$.

Proof. Since ϕ is w_V-continuous, there exist $h \in V$ and $p \in I$ such that $W_p = \{f: \|hf\|_p \leq 1\} \subseteq \{f: |\phi(f)| \leq 1\}$. Let $T = T_h$ be as in Lemma 3.4. In view of 3.4, we have $T'(B_p^\circ) = W_p^\circ$. Since $\phi \in W_p^\circ$ there exists $m \in B_p^\circ$ such that $\phi = T'm$. Now, for each $f \in C_{rc}^\circ$, we have $\langle f, \phi \rangle = \langle f, T'm \rangle = \langle Tf, m \rangle = \text{ff } d(hm)$. This completes the proof.

Combining 3.3 and 3.5 we get Theorem 3.2.

4. The strict and superstrict topologies on C_{rc}°. Buck defined in [4] the strict topology on the space of bounded continuous functions on a locally compact space and he identified the dual in the scalar case. The dual space for the vector case was studied by Wells [18]. Recently Sentilles [15] and Fremlin-Garling-Haydon [5] defined the strict and superstrict topologies on the space of all bounded continuous real-valued functions on a completely regular Hausdorff space. They identified the strict and superstrict dual of C^b with the spaces $M_b(X)$ and $M_\sigma(X)$ respectively. These and other authors completed the result of Hewitt [6] on the representation of linear functionals on spaces of continuous functions. In [3] Bogdanowicz studied the space of continuous linear functionals on the space of continuous mappings from a compact space into a locally convex space. In this section we will introduce on C_{rc}° two locally convex topologies β_1 and β which yield as dual spaces the spaces of all σ-additive and all τ-additive members of $M(B, E')$ respectively. Our approach will be analogous to that of Sentilles.

Let Ω (Ω_1) denote the collection of all closed (zero) sets in βX which are disjoint from X. For Q in Ω, let $B_Q = \{h \in C^b: \hat{h} = 0$ on $Q\}$. Clearly B_Q has all the properties of the family V mentioned in the beginning of §3.

Let β_Q be the locally convex topology on C_{rc}° generated by the family of seminorms $f \rightarrow \|hf\|_p$, $h \in B_Q$, $p \in I$. The strict topology β on C_{rc}° is defined to be the inductive limit of the topologies β_Q, $Q \in \Omega$. The superstrict topology β_1 on C_{rc}° is the inductive limit of the topologies β_Z, $Z \in \Omega_1$. If π is the pointwise convergence topology, one can easily verify the following

Theorem 4.1. $\pi \leq \beta \leq \beta_1 \leq \sigma$.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
Theorem 4.2. \(\beta = \sigma \) iff \(X \) is compact.

Proof. Clearly \(\beta = \sigma \) if \(X \) is compact. On the other hand assume that \(X \) is not compact and that \(\beta = \sigma \).

Let \(x \in \beta X - X, \ Q = \{x\} \). Let \(p \in I, s \in E \) be such that \(p(s) = 2 \). Set \(W = \{f_{C_r} : \|f\|_p \leq 1\} \). Then \(W \) is a \(\sigma \)-neighborhood of zero. By hypothesis \(W \) is also a \(\beta \)-neighborhood of zero. Since \(\beta = \beta_Q \), \(W \) is a \(\beta_Q \)-neighborhood of zero. Thus there exist \(h \in B_Q \) and \(p_1 \) in \(I \) such that \(V = \{f_{C_r} : \|hf\|_{p_1} \leq 1\} \subset W \).

Choose \(\delta > 0 \) such that \(\delta p_1(s) < 1 \), and set \(F = \{y \in \beta X : |\hat{h}(y)| > \delta\} \).

Let \(g \in C^b, 0 \leq g \leq 1, \hat{g}(x) = 1 \) and \(\hat{g} = 0 \) on \(F \). But then the function \(f = gs \) is in \(V \) but not in \(W \). This contradiction completes the proof.

Since \(X \) is pseudocompact iff \(\Omega_1 = \{\emptyset\} \), we have the following theorem for \(\beta_1 \) whose proof is similar to that of Theorem 4.2.

Theorem 4.3. \(\beta_1 = \sigma \) iff \(X \) is pseudocompact.

If \(X \) is locally compact, then \(X \) is open in \(\beta X \). Let \(Q = \beta X - X \). Then \(B_Q \) is the space of all continuous real functions on \(X \) that vanish at infinity. Hence, as one can easily prove, \(\beta = \beta_Q \) coincides with the strict topology as defined by Buck in [4]. We will next identify the dual spaces of \((C_{rc}, \beta)\) and \((C_{rc}, \beta_1)\).

Lemma 4.4. If \(\phi \in (C_{rc}, \beta)' \), then there exists \(m \in M_r(B, E') \) such that \(\phi(f) = \int f dm \) for all \(f \in C_{rc} \).

Proof. Since \(\beta = \sigma \) there exists \(m \in M(B, E') \) such that \(\phi(f) = \int f dm \) for all \(f \) in \(C_{rc} \). Let \(m \in M_{r,p}(Bo(\beta X), E') \) be such that \(\phi(f) = \int f dm \) for all \(f \) in \(C_{rc} \). Let \(Q \in \Omega \). Since \(\phi \) is \(\beta_Q \)-continuous, there exists (by 3.5) \(h \in B_Q \) and \(\mu \in M(B, E') \) such that \(hf d \mu = \phi(f) \) for all \(f \in C_{rc} \). Let \(\mu \in M_r(Bo(\beta X), E') \) be such that \(hf d \mu = \int f d \mu \) for all \(f \) in \(C_{rc} \). Then \(\int f dm = \phi(f) = \int hf d \mu = \int hf d \mu \) for each \(f \in C_{rc} \). It follows that \(\hat{m} = \hat{h}\hat{\mu} \). If \(F \) is a Borel set in \(\beta X \) contained in \(Q \) and if \(s \in E \), then \(\int m(F)s = \int f \hat{h} d(\hat{\mu}s) = 0 \). We conclude that \(m_p(Q) = 0 \). This, being true for all \(Q \in \Omega \), implies that \(m \) is \(r \)-additive by 2.7. This completes the proof.

Lemma 4.5. If \(m \in M_{r,p}(B, E') \), then the map \(\phi_m : C_{rc} \rightarrow R, \phi_m(f) = \int f dm \), is \(\beta \)-continuous.

Proof. It suffices to show that \(\phi_m \) is \(\beta_Q \)-continuous for every \(Q \) in \(\Omega \). So, let \(Q \in \Omega \). Define \(T : C^b \rightarrow R \) by \(T(f) = \int f dm_p \). Since \(m_p \) is \(r \)-additive, \(T \) is \(\beta(C^b) \)-continuous, where \(\beta(C^b) \) is the strict topology on \(C^b \) as defined by Sentilles in [15] (see Sentilles, Theorem 4.3). Hence there exists \(g \) in \(B_Q \) such that

\[W = \{f \in C^b : \|gf\| \leq 1\} \subset \{f \in C^b : |T(f)| \leq 1\}. \]
Set $V = \{ f \in C_{rc} : \|gf\|_p \leq 1 \}$ and let $f \in V$.

Define $h : X \to R$, $h(x) = p(f(x))$. Clearly $h \in C^p$. Moreover $|h(x)g(x)| = p(g(x)f(x)) \leq 1$ for all $x \in X$ and hence $h \in W$. It follows that $\|hf dm\| \leq \|h dm_p\| = T(h) \leq 1$. This shows that ϕ_m is β continuous. The lemma is proved.

Combining Lemmas 4.4 and 4.5 we get

Theorem 4.6. The space $M_r(B, E')$ is isomorphic to the space $(C_{rc}, \beta)'$ via the isomorphism $m \mapsto \phi_m$ where $\phi_m(f) = \int f dm$ for all f in C_{rc}.

Using similar arguments we prove

Theorem 4.7. The space $M_\sigma(B, E')$ is isomorphic to the space (C_{rc}, β_σ) via the isomorphism $m \mapsto \phi_m$, $\phi_m(f) = \int f dm$.

5. The case of a locally convex lattice E. In this section E will be assumed to be a locally convex lattice. By Peressini [13, p. 105] there exists a generating family of continuous seminorms p such that $|x| \leq |y|$ implies $p(x) \leq p(y)$. In view of this, we may assume that every $p \in I$ has the above property. The space (C_{rc}, σ) is, under the pointwise ordering, a locally convex lattice. The question we are going to investigate now is the following: Which elements of C_{rc} correspond to members of $M_\sigma(B, E')$ and which to members of $M_r(B, E')$? We will show that these are exactly the σ-additive and τ-additive members of C_{rc}.

Definition. For a net $\{f_\alpha\}$ in C_{rc} we say that $\{f_\alpha\}$ decreases to zero, and write $f_\alpha \downarrow 0$, if for each $x \in X$ we have $\lim f_\alpha(x) = 0$ and $0 < f_\alpha(x) < f_\gamma(x)$ if $\alpha \geq \gamma$. We define similarly what we mean by saying that a sequence $\{f_n\}$ in C_{rc} decreases to zero. An element ϕ of C_{rc} is called σ-additive if $\lim \phi(f_\alpha) = 0$ for each sequence $\{f_\alpha\}$ in C_{rc} that decreases to zero. An element ϕ of C_{rc} is called τ-additive if $\lim \phi(f_\alpha) = 0$ whenever $f_\alpha \downarrow 0$. We will denote by $L_\sigma(C_{rc})$ and $L_\tau(C_{rc})$ the spaces of all σ-additive and all τ-additive members of C_{rc} respectively.

Theorem 5.1. Let $\phi \in C_{rc}$. Then ϕ is τ-additive iff there exists $m \in M_r(B, E')$ such that $\phi(f) = \int f dm$ for all $f \in C_{rc}$.

Proof. Let $m \in M_{r,p}(B, E')$ be such that $\phi(f) = \int f dm$ for all $f \in C_{rc}$. Let $\{f_\alpha\}$ be a net in C_{rc} that decreases to zero. For each α, let $h_\alpha : X \to R$, $h_\alpha(x) = p(f(x))$. Since p has the property that $p(s) \leq p(t)$ whenever $|s| \leq |t|$, it follows that $h_\alpha \downarrow 0$. Hence $\|f_\alpha dm\| \leq \|h_\alpha dm_p\| \to 0$ since m_p is τ-additive (see Varadarajan [17, p. 174]).

Conversely, assume that ϕ is τ-additive. Let $s \geq 0, s \in E$. If $\{f_\alpha\}$ is a net in $C^p(X)$ which decreases to zero, then $f_\alpha s \downarrow 0$. Hence $\int f_\alpha d(ms) = \int f_\alpha s dm = \phi(f_\alpha s) \to 0$. It follows that ms is τ-additive (see Varadarajan [17, p. 174]).
Since every element of \(E \) is the difference of two positive elements, it follows that

\[m s \in M_s(X) \] for all \(s \in E \) and hence \(m \) is \(\tau \)-additive.

Using an analogous argument we prove the following:

Theorem 5.2. Let \(\phi \in C'_{rc} \). Then \(\phi \) is \(\sigma \)-additive iff there exists \(m \in M_o(B, E') \) such that \(\phi(f) = \int f \, dm \) for all \(f \in C_{rc} \).

Lemma 5.3. Let \(m \in M_p(B, E') \) and \(|m| = \sup(m, -m) \). Then \(|m| \in M_p(B, E') \) and \(|m|_p = m_p \).

Proof. Recall that \(p \) has the property that \(p(s) \leq p(t) \) whenever \(|s| \leq |t| \). As shown in [8], for each \(s \geq 0 \) in \(E \) and each \(F \) in \(B(X) \) we have \(|m|(F)s = \sup \Sigma |m(F_i)s| \) where the supremum is taken over all finite \(B \)-partitions \(\{F_i\} \) of \(F \).

Let now \(F \in B(X) \). If \(F_1, \ldots, F_n \) is a \(B \)-partition of \(F \), and if \(s_i \in E \) with \(p(s_i) \leq 1 \),

\[
|\sum m(F_i)s_i| \leq \sum |m(F_i)||s_i| \leq \sum |m(F_i)||s_i| \leq |m|_p(F)
\]

since \(p(|s_i|) = p(s_i) \leq 1 \). Thus \(m_p(F) \leq |m|_p(F) \). On the other hand, let \(G_1, \ldots, G_n \) be a \(B \)-partition of \(F \) and let \(s_i \in E \) with \(p(s_i) \leq 1 \). We will show that \(\Sigma |m|(G_i)s_i \leq m_p(F) \). Since \(p(|s_i|) \leq 1 \) and since \(\Sigma |m|(G_i)s_i \leq \Sigma |m|(G_i)|s_i| \), we may assume that \(s_i \geq 0 \). Let \(\epsilon > 0 \) be given. For each \(i, 1 \leq i \leq n \), there exists a \(B \)-partition \(F^i_1, \ldots, F^i_{K_i} \) of \(G_i \) such that

\[
\frac{1}{K_i} \sum_{j=1}^{K_i} |m(F^i_j)s_i| > |m|(G_i)s_i - \frac{\epsilon}{n}.
\]

Let \(N = K_1 + \cdots + K_n \). Choose \(t_{ij} \in E, |t_{ij}| \leq s_i \), such that \(|m(F^i_j)t_{ij}| > |m(F^i_j)|s_i - \epsilon/N \). Since \(p(t_{ij}) \leq 1 \) and \(\{F^i_j\} \) is a \(B \)-partition of \(F \), we have

\[
m_p(F) \geq \sum_{i,j} |m(F^i_j)t_{ij}| = \sum_{i=1}^{n} \sum_{j=1}^{K_i} |m(F^i_j)t_{ij}|
\geq \sum_{i=1}^{n} \sum_{j=1}^{K_i} |m(F^i_j)|s_i - \epsilon \geq \sum_{i=1}^{n} |m|(G_i)s_i - 2\epsilon.
\]

Since \(\epsilon > 0 \) was arbitrary, we have \(\Sigma |m|(G_i)s_i \leq m_p(F) \). This proves that \(|m|_p(F) \leq m_p(F) \) and the lemma is proved.

By the above lemma, if \(m \in M_s(B, E') \), then \(|m| \) is also \(\tau \)-additive. From this follows that \(M_{\tau}(B, E') \) is an ideal in \(M(B, E') \). Since the map \(m \rightarrow \phi_m \), of Theorem 1.1, is lattice-preserving and since \(M_{\tau}(B, E') \) corresponds to \(L_{\tau}(C_{rc}) \) in this map, it follows that \(L_{\tau}(C_{rc}) \) is an ideal in the Riesz space \(C'_{rc} \). The same is
true for the space $L_\sigma(C_{rc})$. We have thus the following theorem.

Theorem 5.4. Each of the spaces $L_\sigma(C_{rc})$ and $L_\tau(C_{rc})$ is an ideal in the Riesz space C_{rc}^\prime.

It is well known (Knowles [11, p. 149]) that any positive linear functional ϕ on C^b can be written uniquely as a sum of a positive purely finitely-additive functional on C^b, a positive purely σ-additive and a positive τ-additive functional on C^b. It is therefore natural to ask whether this is true in our space (C_{rc}, σ).

We will show that the answer to this question is affirmative.

Definition. An element $\phi \geq 0$ in C_{rc}^\prime is called purely finitely-additive if the only σ-additive functional ϕ_1 in C_{rc} with $0 \leq \phi_1 < \phi$ is the zero functional. Similarly, an element $\phi \geq 0$ of $L_\sigma(C_{rc})$ is purely σ-additive if $0 < \phi_1 < \phi$ and $\phi_1 \in L_\tau(C_{rc})$ implies that $\phi_1 = 0$.

We are going to prove the following

Theorem 5.5. Given $\phi \geq 0$ in C_{rc}^\prime there are ϕ_1, ϕ_2, ϕ_3 in C_{rc}^\prime, ϕ_1 purely finitely-additive, ϕ_2 purely σ-additive, ϕ_3 τ-additive, $\phi_1, \phi_2, \phi_3 \geq 0$, such that $\phi = \phi_1 + \phi_2 + \phi_3$. Moreover this decomposition is unique.

To begin with, assume that $\phi, \phi_1, \phi_2 \geq 0$ in C_{rc}^\prime, ϕ_1 σ-additive, $\phi = \phi_1 + \phi_2$. Let $m, m_1, m_2 \in M_{\tau,p}(B(\beta X), E')$ be such that $\phi(f) = \int f dm$, $\phi_i(f) = \int f dm_i$, $i = 1, 2$. Choose a decreasing sequence $\{U_i\}$ of cozero sets in βX, such that $m_p(U_i) \to d$. Let $K = \bigcap U_i$. Clearly $m_p(K) = d$. Since ϕ_1 is σ-additive we have $(m_1)_p(\beta X - K) = 0$ by 2.7. Hence $m_1(F) = m_1(F \cap K) \leq m(F \cap K)$ for each Borel set F in βX since $m_2 \geq 0$ and $m = m_1 + m_2$. Define m_2 on $B(\beta X)$ by $m_2(F) = m(F \cap K)$. Then $m_3 \in M_{\tau,p}(B(\beta X), E')$ and $(m_3)_p(F) = m_p(F \cap K)$ for each F in $B(\beta X)$. Since E is locally solid, the positive cone is closed (see Schaefer [14, p. 235]).

Now let $f \geq 0$ in C_{rc}. If $y \in \beta X$ and if $\{x_\alpha\}$ is a net in X converging to y in βX, then $\hat{f}(y) = \lim_{\alpha} \hat{f}(x_\alpha) = \lim f(x_\alpha) \geq 0$. Thus $\hat{f} \geq 0$. It follows that the map $\phi_3 : C_{rc} \to R$, $\phi_3(f) = \int \hat{f} dm_3$ is positive. Moreover $\phi_3 \geq \phi_1$ since $m_3 \geq m_1$.

We next show that ϕ_3 is σ-additive. Indeed, let Z be a zero set in βX disjoint from X. Then $U = \beta X - Z$ is a cozero set containing X. Since $X \subset U \cap U_i \downarrow K \cap U$, we have

$$d = \lim m_p(U \cap U_i) = m_p(K \cap U) \leq m_p(K) = d.$$

So $(m_3)_p(\beta X) = m_p(K) = m_p(K \cap U) = (m_3)_p(U)$ and hence $(m_3)_p(Z) = 0$. By 5.2 and 2.7 ϕ_3 is σ-additive. Clearly $\phi - \phi_3$ is purely finitely-additive. We have thus proved
Theorem 5.6. If \(\phi \geq 0 \) in \(C'_r(\mathbb{C}) \), then there are unique \(\phi_1, \phi_2 \geq 0 \) in \(C'_r(\mathbb{C}) \), \(\phi_1 \) purely finitely-additive and \(\phi_2 \) \(\sigma \)-additive, such that \(\phi = \phi_1 + \phi_2 \).

Next assume that \(0 \leq \phi \in L_0(C'_r) \). Suppose that \(\phi = \phi_1 + \phi_2 \), \(\phi_1 \in L_0(C'_r) \), \(\phi_2 \in L_0(C'_r) \), \(\phi_1, \phi_2 \geq 0 \). Let \(m, m_1, m_2 \in M_{r,p}(Bo(\beta X), E') \) be such that \(\phi(f) = \int f d\phi, \phi_i(f) = \int f d\phi_i, i = 1, 2 \), for all \(f \) in \(C'_r \). Let \(d = \inf \{ m_p(O) : O \) open in \(\beta X, X \subset O \} \). Choose a decreasing sequence \(\{ O_n \} \) of open sets in \(\beta X, X \subset O_n \), \(m_p(O_n) \to d \). Since \(\phi_1 \) is \(\tau \)-additive we have that \((m_1)_p(\beta X \setminus K) = 0 \). Thus \(m_1(F) = m_1(F \cap K) \leq m(F \cap K) \) for all Borel sets \(F \) in \(\beta X \). Define \(m_3 \) on \(Bo(\beta X) \) by \(m_3(F) = m(F \cap K) \). Then \(m_3 \in M_{r,p}(Bo(\beta X), E') \) and \(m_3 \geq m_1 \).

Let \(Q \) be a closed set in \(\beta X \) disjoint from \(X \). Then \(O = \beta X - Q \supset X \) and \(O \) is open. Hence \(d \leq \lim m_p(O \cap O_i) = m_p(O \cap K) \leq m_p(K) = d \). It follows that \((m_3)_p(\beta X) = (m_3)_p(O) \) and hence \((m_3)_p(O) = 0 \). This, being true for all closed sets in \(\beta X \) which are disjoint from \(X \), implies that the map \(\phi_3 : C'_r \to R, \phi_3(f) = \int f d\phi_3 \), is \(\tau \)-additive. Also \(\phi_3 \geq 0 \). Moreover, \(\phi - \phi_3 \) is purely \(\sigma \)-additive. We have thus proved

Theorem 5.7. Given \(\phi \geq 0 \) in \(L_0(C'_r) \), there are unique \(\phi_1, \phi_2 \geq 0 \), \(\phi_1 \in L_r(C'_r) \), \(\phi_2 \) purely \(\sigma \)-additive, such that \(\phi = \phi_1 + \phi_2 \).

Combining Theorems 5.6 and 5.7 we get Theorem 5.5.

BIBLIOGRAPHY

DEPARTMENT OF MATHEMATICS, SOUTHERN ILLINOIS UNIVERSITY, CARBONDALE, ILLINOIS 62901

Current address: Instituto de Matemática, Universidade Estadual de Campinas, Caixa Postal 1170, 13100 Campinas, São Paulo, Brazil