Spaces of vector measures
HTML articles powered by AMS MathViewer
- by A. Katsaras
- Trans. Amer. Math. Soc. 206 (1975), 313-328
- DOI: https://doi.org/10.1090/S0002-9947-1975-0365111-8
- PDF | Request permission
Abstract:
Let ${C_{rc}} = {C_{rc}}(X,E)$ denote the space of all continuous functions $f$, from a completely regular Hausdorff space $X$ into a locally convex space $E$, for which $f(X)$ is relatively compact. As it is shown in [8], the uniform dual ${Cβ_{rc}}$ of ${C_{rc}}$ can be identified with a space $M(B,Eβ)$ of $Eβ$-valued measures defined on the algebra of subsets of $X$ generated by the zero sets. In this paper the subspaces of all $\sigma$-additive and all $\tau$-additive members of $M(B,Eβ)$ are studied. Two locally convex topologies $\beta$ and ${\beta _1}$ are considered on ${C_{rc}}$. They yield as dual spaces the spaces of all $\tau$-additive and all $\sigma$-additive members of $M(B,Eβ)$ respectively. In case $E$ is a locally convex lattice, the $\sigma$-additive and $\tau$-additive members of $M(B,Eβ)$ correspond to the $\sigma$-additive and $\tau$-additive members of ${C_{rc}}$ respectively.References
- A. D. Alexandroff, Additive set-functions in abstract spaces, Rec. Math. [Mat. Sbornik] N.S. 8 (50) (1940), 307β348 (English, with Russian summary). MR 0004078
- Witold M. Bogdanowicz, Representations of linear continuous functionals on the space $C(X,\,Y)$ of continuous functions from compact $X$ into locally convex $Y$, Proc. Japan Acad. 42 (1966), 1122β1127. MR 213503
- Witold M. Bogdanowicz, An approach to the theory of integration generated by Daniell functionals and representations of linear continuous functionals, Math. Ann. 173 (1967), 34β52. MR 213502, DOI 10.1007/BF01351517
- R. Creighton Buck, Bounded continuous functions on a locally compact space, Michigan Math. J. 5 (1958), 95β104. MR 105611
- D. H. Fremlin, D. J. H. Garling, and R. G. Haydon, Bounded measures on topological spaces, Proc. London Math. Soc. (3) 25 (1972), 115β136. MR 344405, DOI 10.1112/plms/s3-25.1.115
- Edwin Hewitt, Linear functionals on spaces of continuous functions, Fund. Math. 37 (1950), 161β189. MR 42684, DOI 10.4064/fm-37-1-161-189
- G. W. Johnson, The dual of $C(S,\,F)$, Math. Ann. 187 (1970), 1β8. MR 268653, DOI 10.1007/BF01368156
- A. Katsaras, Continuous linear functionals on spaces of vector-valued functions, Bull. Soc. Math. GrΓ¨ce (N.S.) 15 (1974), 13β19. MR 629982
- R. B. Kirk, Locally compact, $B$-compact spaces, Nederl. Akad. Wetensch. Proc. Ser. A 72=Indag. Math. 31 (1969), 333β344. MR 0264609
- Gottfried KΓΆthe, Topological vector spaces. I, Die Grundlehren der mathematischen Wissenschaften, Band 159, Springer-Verlag New York, Inc., New York, 1969. Translated from the German by D. J. H. Garling. MR 0248498
- J. D. Knowles, Measures on topological spaces, Proc. London Math. Soc. (3) 17 (1967), 139β156. MR 204602, DOI 10.1112/plms/s3-17.1.139
- E. J. McShane, A Riemann-type integral that includes Lebesgue-Stieltjes, Bochner and stochastic integrals, Memoirs of the American Mathematical Society, No. 88, American Mathematical Society, Providence, R.I., 1969. MR 0265527
- Anthony L. Peressini, Ordered topological vector spaces, Harper & Row, Publishers, New York-London, 1967. MR 0227731
- Helmut H. Schaefer, Topological vector spaces, The Macmillan Company, New York; Collier Macmillan Ltd., London, 1966. MR 0193469
- F. Dennis Sentilles, Bounded continuous functions on a completely regular space, Trans. Amer. Math. Soc. 168 (1972), 311β336. MR 295065, DOI 10.1090/S0002-9947-1972-0295065-1
- Ivan Zinger, Linear functionals on the space of continuous mappings of a compact Hausdorff space into a Banach space, Rev. Math. Pures Appl. 2 (1957), 301β315 (Russian). MR 96964
- V. S. Varadarajan, Measures on topological spaces, Mat. Sb. (N.S.) 55 (97) (1961), 35β100 (Russian). MR 0148838
- James Wells, Bounded continuous vector-valued functions on a locally compact space, Michigan Math. J. 12 (1965), 119β126. MR 176318
Bibliographic Information
- © Copyright 1975 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 206 (1975), 313-328
- MSC: Primary 46E27
- DOI: https://doi.org/10.1090/S0002-9947-1975-0365111-8
- MathSciNet review: 0365111