Extending closed plane curves to immersions of the disk with $n$ handles
HTML articles powered by AMS MathViewer
 by Keith D. Bailey PDF
 Trans. Amer. Math. Soc. 206 (1975), 124 Request permission
Abstract:
Let $f:S \to E$ be a normal curve in the plane. The extensions of $f$ to immersions of the disk with $n$ handles $({T_n})$ can be determined as follows. A word for $f$ is constructed using the definitions of Blank and Marx and a combinatorial structure, called a ${T_n}$assemblage, is defined for such words. There is an immersion extending $f$ to ${T_n}$ iff the tangent winding number of $f$ is $1  2n$ and $f$ has a ${T_n}$assemblage. For each $n$, a canonical curve ${f_n}$ with a topologically unique extension to ${T_n}$ is described (${f_0}$ = Jordan curve). Any extendible curve with the minimum number $(2n + 2\;{\text {for}}\;n > 0)$ of selfintersections is equivalent to ${f_n}$.References

S. J. Blank, Extending immersions of the circle, Dissertation, Brandeis University, 1967; Cf. V. Poenaru, Extensions des immersions en codimension 1 (d’après Blank), Séminaire Bourbaki: 1967/68, Exposé 342, Benjamin, New York, 1969. MR 41 #3.
 George K. Francis, The folded ribbon theorem. A contribution to the study of immersed circles, Trans. Amer. Math. Soc. 141 (1969), 271–303. MR 243542, DOI 10.1090/S00029947196902435421
 George K. Francis, Extensions to the disk of properly nested plane immersions of the circle, Michigan Math. J. 17 (1970), 377–383. MR 284985 —, PicardLoewner problem, Geometry Seminar, University of Illinois, 1972.
 George K. Francis, Spherical curves that bound immersed discs, Proc. Amer. Math. Soc. 41 (1973), 87–93. MR 321112, DOI 10.1090/S00029939197303211120
 George K. Francis, Branched and folded parametrizations of the sphere, Bull. Amer. Math. Soc. 80 (1974), 72–76. MR 350753, DOI 10.1090/S000299041974133574
 André Gramain, Bounding immmersions of codimension $1$ in the Euclidean space, Bull. Amer. Math. Soc. 76 (1970), 361–365. MR 259931, DOI 10.1090/S00029904197012479X
 Maurice Heins, Complex function theory, Pure and Applied Mathematics, Vol. 28, Academic Press, New YorkLondon, 1968. MR 0239054
 John Jewett, Differentiable approximations to light interior transformations, Duke Math. J. 23 (1956), 111–124. MR 79751
 Morris L. Marx, Normal curves arising from light open mappings of the annulus, Trans. Amer. Math. Soc. 120 (1965), 46–56. MR 195073, DOI 10.1090/S00029947196501950731
 Morris L. Marx, Light open mappings on a torus with a disc removed, Michigan Math. J. 15 (1968), 449–456. MR 234433
 Morris L. Marx, Extensions of normal immersions of $S^{1}$ into $R^{2}$, Trans. Amer. Math. Soc. 187 (1974), 309–326. MR 341505, DOI 10.1090/S00029947197403415050
 Morris L. Marx and Roger F. Verhey, Interior and polynomial extensions of immersed circles, Proc. Amer. Math. Soc. 24 (1970), 41–49. MR 252660, DOI 10.1090/S00029939197002526607
 Marston Morse and Maurice Heins, Topological methods in the theory of functions of a single complex variable. I. Deformation types of locally simple plane curves, Ann. of Math. (2) 46 (1945), 600–624. MR 16466, DOI 10.2307/1969200
 Marston Morse and Maurice Heins, Deformation classes of meromorphic functions and their extensions to interior transformations, Acta Math. 79 (1947), 51–103. MR 20128, DOI 10.1007/BF02404694 S. Stoïlow, Leçons sur les principes topologiques de la théorie des fonctions analytiques, GauthierVillars, Paris, 1938.
 C. J. Titus, A theory of normal curves and some applications, Pacific J. Math. 10 (1960), 1083–1096. MR 114189
 Charles J. Titus, The combinatorial topology of analytic functions on the boundary of a disk, Acta Math. 106 (1961), 45–64. MR 166375, DOI 10.1007/BF02545813 S. Troyer, Extending a boundary immersion to the disc with $n$ holes, Dissertation, Northeastern University, 1973.
 J. H. C. Whitehead, Manifolds with transverse fields in euclidean space, Ann. of Math. (2) 73 (1961), 154–212. MR 124917, DOI 10.2307/1970286
 Hassler Whitney, On regular closed curves in the plane, Compositio Math. 4 (1937), 276–284. MR 1556973
 Gordon Thomas Whyburn, Topological analysis, Second, revised edition, Princeton Mathematical Series, No. 23, Princeton University Press, Princeton, N.J., 1964. MR 0165476
Additional Information
 © Copyright 1975 American Mathematical Society
 Journal: Trans. Amer. Math. Soc. 206 (1975), 124
 MSC: Primary 57D40
 DOI: https://doi.org/10.1090/S00029947197503706213
 MathSciNet review: 0370621