## Groups of free involutions of homotopy $S^{[n/2]}\times S^{[(n+1)/2]}$’s

HTML articles powered by AMS MathViewer

- by H. W. Schneider PDF
- Trans. Amer. Math. Soc.
**206**(1975), 99-136 Request permission

## Abstract:

Let $M$ be an oriented $n$-dimensional manifold which is homotopy equivalent to ${S^l} \times {S^{n - l}}$, where $l$ is the greatest integer in $n/2$. Let $Q$ be the quotient manifold of $M$ by a fixed point free involution. Associated to each such $Q$ are a unique integer $k\bmod {2^{\varphi (l)}}$, called the type of $Q$, and a cohomology class $\omega$ in ${H^1}(Q;{Z_2})$ which is the image of the generator of the first cohomology group of the classifying space for the double cover of $Q$ by $M$. Let ${I_n}(k)$ be the set of equivalence classes of such manifolds $Q$ of type $k$ for which ${\omega ^{l + 1}} = 0$, where two such manifolds are equivalent if there is a diffeomorphism, orientation preserving if $k$ is even, between them. It is shown in this paper that if $n \geq 6$, then ${I_n}(k)$ can be given the structure of an abelian group. The groups ${I_8}(k)$ are partially calculated for $k$ even.## References

- J. F. Adams,
*On the groups $J(X)$. II*, Topology**3**(1965), 137–171. MR**198468**, DOI 10.1016/0040-9383(65)90040-6 - J. F. Adams,
*Vector fields on spheres*, Ann. of Math. (2)**75**(1962), 603–632. MR**139178**, DOI 10.2307/1970213 - M. F. Atiyah,
*Thom complexes*, Proc. London Math. Soc. (3)**11**(1961), 291–310. MR**131880**, DOI 10.1112/plms/s3-11.1.291 - M. G. Barratt and M. E. Mahowald,
*The metastable homotopy of $\textrm {O}(n)$*, Bull. Amer. Math. Soc.**70**(1964), 758–760. MR**182004**, DOI 10.1090/S0002-9904-1964-11229-5 - Charles W. Curtis and Irving Reiner,
*Representation theory of finite groups and associative algebras*, Pure and Applied Mathematics, Vol. XI, Interscience Publishers (a division of John Wiley & Sons, Inc.), New York-London, 1962. MR**0144979** - Michikazu Fujii,
*$K_{O}$-groups of projective spaces*, Osaka Math. J.**4**(1967), 141–149. MR**219060** - André Haefliger,
*Plongements différentiables de variétés dans variétés*, Comment. Math. Helv.**36**(1961), 47–82 (French). MR**145538**, DOI 10.1007/BF02566892 - P. J. Hilton and S. Wylie,
*Homology theory: An introduction to algebraic topology*, Cambridge University Press, New York, 1960. MR**0115161** - J. F. P. Hudson,
*Concordance, isotopy, and diffeotopy*, Ann. of Math. (2)**91**(1970), 425–448. MR**259920**, DOI 10.2307/1970632 - Michel A. Kervaire and John W. Milnor,
*Groups of homotopy spheres. I*, Ann. of Math. (2)**77**(1963), 504–537. MR**148075**, DOI 10.1090/S0273-0979-2015-01504-1 - J. Levine,
*A classification of differentiable knots*, Ann. of Math. (2)**82**(1965), 15–50. MR**180981**, DOI 10.2307/1970561
M. E. Mahowald, - Daniel Quillen,
*The Adams conjecture*, Topology**10**(1971), 67–80. MR**279804**, DOI 10.1016/0040-9383(71)90018-8 - Norman Steenrod,
*The Topology of Fibre Bundles*, Princeton Mathematical Series, vol. 14, Princeton University Press, Princeton, N. J., 1951. MR**0039258** - Robert E. Stong,
*Notes on cobordism theory*, Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1968. Mathematical notes. MR**0248858** - Emery Thomas,
*Seminar on fiber spaces*, Lecture Notes in Mathematics, vol. 13, Springer-Verlag, Berlin-New York, 1966. Lectures delivered in 1964 in Berkeley and 1965 in Zürich; Berkeley notes by J. F. McClendon. MR**0203733**
K. Wang, - R. Wells,
*Free involutions of homotopy $S^{l}\times S^{l}$’s*, Illinois J. Math.**15**(1971), 160–184. MR**271957**
—,

*The metastable homotopy of*${S^n}$, Mem. Amer. Math. Soc. No. 72, 1967. MR

**38**#5216.

*Free and semi-free smooth actions of ${S^1}$ and ${S^3}$ on homotopy spheres*, Thesis, University of Chicago, 1972.

*Some examples of free involutions of homotopy*${S^l} \times {S^{l,}}s$, Illinois J. Math. (to appear). —,

*Some modifications of self-intersections*(Mimeographed notes).

## Additional Information

- © Copyright 1975 American Mathematical Society
- Journal: Trans. Amer. Math. Soc.
**206**(1975), 99-136 - MSC: Primary 57E25; Secondary 57D60
- DOI: https://doi.org/10.1090/S0002-9947-1975-0370635-3
- MathSciNet review: 0370635