Groups of free involutions of homotopy $S^{[n/2]}\times S^{[(n+1)/2]}$’s
HTML articles powered by AMS MathViewer
- by H. W. Schneider
- Trans. Amer. Math. Soc. 206 (1975), 99-136
- DOI: https://doi.org/10.1090/S0002-9947-1975-0370635-3
- PDF | Request permission
Abstract:
Let $M$ be an oriented $n$-dimensional manifold which is homotopy equivalent to ${S^l} \times {S^{n - l}}$, where $l$ is the greatest integer in $n/2$. Let $Q$ be the quotient manifold of $M$ by a fixed point free involution. Associated to each such $Q$ are a unique integer $k\bmod {2^{\varphi (l)}}$, called the type of $Q$, and a cohomology class $\omega$ in ${H^1}(Q;{Z_2})$ which is the image of the generator of the first cohomology group of the classifying space for the double cover of $Q$ by $M$. Let ${I_n}(k)$ be the set of equivalence classes of such manifolds $Q$ of type $k$ for which ${\omega ^{l + 1}} = 0$, where two such manifolds are equivalent if there is a diffeomorphism, orientation preserving if $k$ is even, between them. It is shown in this paper that if $n \geq 6$, then ${I_n}(k)$ can be given the structure of an abelian group. The groups ${I_8}(k)$ are partially calculated for $k$ even.References
- J. F. Adams, On the groups $J(X)$. II, Topology 3 (1965), 137–171. MR 198468, DOI 10.1016/0040-9383(65)90040-6
- J. F. Adams, Vector fields on spheres, Ann. of Math. (2) 75 (1962), 603–632. MR 139178, DOI 10.2307/1970213
- M. F. Atiyah, Thom complexes, Proc. London Math. Soc. (3) 11 (1961), 291–310. MR 131880, DOI 10.1112/plms/s3-11.1.291
- M. G. Barratt and M. E. Mahowald, The metastable homotopy of $\textrm {O}(n)$, Bull. Amer. Math. Soc. 70 (1964), 758–760. MR 182004, DOI 10.1090/S0002-9904-1964-11229-5
- Charles W. Curtis and Irving Reiner, Representation theory of finite groups and associative algebras, Pure and Applied Mathematics, Vol. XI, Interscience Publishers (a division of John Wiley & Sons, Inc.), New York-London, 1962. MR 0144979
- Michikazu Fujii, $K_{O}$-groups of projective spaces, Osaka Math. J. 4 (1967), 141–149. MR 219060
- André Haefliger, Plongements différentiables de variétés dans variétés, Comment. Math. Helv. 36 (1961), 47–82 (French). MR 145538, DOI 10.1007/BF02566892
- P. J. Hilton and S. Wylie, Homology theory: An introduction to algebraic topology, Cambridge University Press, New York, 1960. MR 0115161
- J. F. P. Hudson, Concordance, isotopy, and diffeotopy, Ann. of Math. (2) 91 (1970), 425–448. MR 259920, DOI 10.2307/1970632
- Michel A. Kervaire and John W. Milnor, Groups of homotopy spheres. I, Ann. of Math. (2) 77 (1963), 504–537. MR 148075, DOI 10.1090/S0273-0979-2015-01504-1
- J. Levine, A classification of differentiable knots, Ann. of Math. (2) 82 (1965), 15–50. MR 180981, DOI 10.2307/1970561 M. E. Mahowald, The metastable homotopy of ${S^n}$, Mem. Amer. Math. Soc. No. 72, 1967. MR 38 #5216.
- Daniel Quillen, The Adams conjecture, Topology 10 (1971), 67–80. MR 279804, DOI 10.1016/0040-9383(71)90018-8
- Norman Steenrod, The Topology of Fibre Bundles, Princeton Mathematical Series, vol. 14, Princeton University Press, Princeton, N. J., 1951. MR 0039258
- Robert E. Stong, Notes on cobordism theory, Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1968. Mathematical notes. MR 0248858
- Emery Thomas, Seminar on fiber spaces, Lecture Notes in Mathematics, vol. 13, Springer-Verlag, Berlin-New York, 1966. Lectures delivered in 1964 in Berkeley and 1965 in Zürich; Berkeley notes by J. F. McClendon. MR 0203733 K. Wang, Free and semi-free smooth actions of ${S^1}$ and ${S^3}$ on homotopy spheres, Thesis, University of Chicago, 1972.
- R. Wells, Free involutions of homotopy $S^{l}\times S^{l}$’s, Illinois J. Math. 15 (1971), 160–184. MR 271957 —, Some examples of free involutions of homotopy ${S^l} \times {S^{l,}}s$, Illinois J. Math. (to appear). —, Some modifications of self-intersections (Mimeographed notes).
Bibliographic Information
- © Copyright 1975 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 206 (1975), 99-136
- MSC: Primary 57E25; Secondary 57D60
- DOI: https://doi.org/10.1090/S0002-9947-1975-0370635-3
- MathSciNet review: 0370635