Holomorphic functions with growth conditions
HTML articles powered by AMS MathViewer
- by Bent E. Petersen
- Trans. Amer. Math. Soc. 206 (1975), 395-406
- DOI: https://doi.org/10.1090/S0002-9947-1975-0379879-8
- PDF | Request permission
Abstract:
Let $P$ be a $p \times q$ matrix of polynomials in $n$ complex variables. If $\Omega$ is a domain of holomorphy in ${{\mathbf {C}}^n}$ and $u$ is a $q$-tuple of holomorphic functions we show that the equation $Pv = Pu$ has a solution $v$ which is a holomorphic $q$-tuple in $\Omega$ and which satisfies an ${L^2}$ estimate in terms of $Pu$. Similar results have been obtained by Y.-T. Siu and R. Narasimhan for bounded domains and by L. Höormander for the case $\Omega = {{\mathbf {C}}^n}$.References
- Lars Hörmander, $L^{2}$ estimates and existence theorems for the $\bar \partial$ operator, Acta Math. 113 (1965), 89–152. MR 179443, DOI 10.1007/BF02391775
- Lars Hörmander, An introduction to complex analysis in several variables, D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto, Ont.-London, 1966. MR 0203075
- Saunders Mac Lane, Homology, Die Grundlehren der mathematischen Wissenschaften, Band 114, Academic Press, Inc., Publishers, New York; Springer-Verlag, Berlin-Göttingen-Heidelberg, 1963. MR 0156879
- Raghavan Narasimhan, Cohomology with bounds on complex spaces, Several Complex Variables, I (Proc. Conf., Univ. of Maryland, College Park, Md., 1970) Springer, Berlin, 1970, pp. 141–150. MR 0279337
- Bent E. Petersen, On the Laplace transform of a temperate distribution supported by a cone, Proc. Amer. Math. Soc. 35 (1972), 123–128. MR 298414, DOI 10.1090/S0002-9939-1972-0298414-9
- Yum-tong Siu, Holomorphic functions of polynomial growth on bounded domains, Duke Math. J. 37 (1970), 77–84. MR 251244
- Elias M. Stein, Singular integrals and differentiability properties of functions, Princeton Mathematical Series, No. 30, Princeton University Press, Princeton, N.J., 1970. MR 0290095
- R. G. Swan, Algebraic $K$-theory, Lecture Notes in Mathematics, No. 76, Springer-Verlag, Berlin-New York, 1968. MR 0245634
Bibliographic Information
- © Copyright 1975 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 206 (1975), 395-406
- MSC: Primary 32A10; Secondary 35E05
- DOI: https://doi.org/10.1090/S0002-9947-1975-0379879-8
- MathSciNet review: 0379879