Partitions of unity and a closed embedding theorem for $(C^{p},b^*)$-manifolds
HTML articles powered by AMS MathViewer
- by Richard E. Heisey
- Trans. Amer. Math. Soc. 206 (1975), 281-294
- DOI: https://doi.org/10.1090/S0002-9947-1975-0397767-8
- PDF | Request permission
Abstract:
Many manifolds of fiber bundle sections possess a natural atlas $\{ ({U_\alpha },{\phi _\alpha })\}$ such that the transition maps ${\phi _\beta }\phi _\alpha ^{ - 1}$, in addition to being smooth, are continuous with respect to the bounded weak topology of the model. In this paper we formalize the idea of such manifolds by defining $({C^p},{b^\ast })$-manifolds, $({C^p},{b^\ast })$-morphisms, etc. We then show that these manifolds admit $({C^p},{b^\ast })$-partitions of unity subordinate to certain open covers and that they can be embedded as closed $({C^p},{b^\ast })$-submanifolds of their model. A corollary of our work is that for any Banach space $B$, the conjugate space ${B^\ast }$ admits smooth partitions of unity subordinate to covers by sets open in the bounded weak-$\ast$ topology.References
- Robert Bonic and John Frampton, Smooth functions on Banach manifolds, J. Math. Mech. 15 (1966), 877–898. MR 0198492
- J. Dieudonné, Natural homomorphisms in Banach spaces, Proc. Amer. Math. Soc. 1 (1950), 54–59. MR 33973, DOI 10.1090/S0002-9939-1950-0033973-8
- Nelson Dunford and Jacob T. Schwartz, Linear Operators. I. General Theory, Pure and Applied Mathematics, Vol. 7, Interscience Publishers, Inc., New York; Interscience Publishers Ltd., London, 1958. With the assistance of W. G. Bade and R. G. Bartle. MR 0117523
- James Eells Jr., A setting for global analysis, Bull. Amer. Math. Soc. 72 (1966), 751–807. MR 203742, DOI 10.1090/S0002-9904-1966-11558-6 R. A. Graff, Elements of local non-linear functional analysis, Thesis, Princeton University, 1972.
- David W. Henderson, Stable classification of infinite-dimensional manifolds by homotopy-type, Invent. Math. 12 (1971), 48–56. MR 290413, DOI 10.1007/BF01389826
- Nicolaas H. Kuiper and Besseline Terpstra-Keppler, Differentiable closed embeddings of Banach manifolds, Essays on Topology and Related Topics (Mémoires dédiés à Georges de Rham), Springer, New York, 1970, pp. 118–125. MR 0264709
- J. Kurzweil, On approximation in real Banach spaces, Studia Math. 14 (1954), 214–231 (1955). MR 68732, DOI 10.4064/sm-14-2-214-231
- Kiiti Morita, Star-finite coverings and the star-finite property, Math. Japon. 1 (1948), 60–68. MR 26803
- Richard S. Palais, Banach manifolds of fiber bundle sections, Actes du Congrès International des Mathématiciens (Nice, 1970) Gauthier-Villars, Paris, 1971, pp. 243–249. MR 0448405
- Walter Rudin, Real and complex analysis, McGraw-Hill Book Co., New York-Toronto-London, 1966. MR 0210528
Bibliographic Information
- © Copyright 1975 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 206 (1975), 281-294
- MSC: Primary 58B05; Secondary 58C20
- DOI: https://doi.org/10.1090/S0002-9947-1975-0397767-8
- MathSciNet review: 0397767