On $h$-local integral domains
HTML articles powered by AMS MathViewer
- by Willy Brandal
- Trans. Amer. Math. Soc. 206 (1975), 201-212
- DOI: https://doi.org/10.1090/S0002-9947-1975-0407004-3
- PDF | Request permission
Abstract:
Related to the question of determining the integral domains with the property that finitely generated modules are a direct sum of cyclic submodules is the question of determining when an integral domain is $h$-local, especially for Bezout domains. Presented are ten equivalent conditions for a Prüfer domain with two maximal ideals not to be $h$-local. If $R$ is an integral domain with quotient field $Q$, if every maximal ideal of $R$ is not contained in the union of the rest of the maximal ideals of $R$, and if $Q/R$ is an injective $R$-module, then $R$ is $h$-local; and if in addition $R$ is a Bezout domain, then every finitely generated $R$-module is a direct sum of cyclic submodules. In particular if $R$ is a semilocal Prüfer domain with $Q/R$ an injective $R$-module, then every finitely generated $R$-module is a direct sum of cyclic submodules.References
- Willy Brandal, Almost maximal integral domains and finitely generated modules, Trans. Amer. Math. Soc. 183 (1973), 203–222. MR 325609, DOI 10.1090/S0002-9947-1973-0325609-3
- Henri Cartan and Samuel Eilenberg, Homological algebra, Princeton University Press, Princeton, N. J., 1956. MR 0077480
- Akira Hattori, The solution of problem 6.1.13, Sūgaku 8 (1956/57), 207–208 (Japanese). MR 94335
- William J. Heinzer, $J$-noetherian integral domains with $1$ in the stable range, Proc. Amer. Math. Soc. 19 (1968), 1369–1372. MR 231817, DOI 10.1090/S0002-9939-1968-0231817-6
- Yukitoshi Hinohara, Projective modules over semilocal rings, Tohoku Math. J. (2) 14 (1962), 205–211. MR 180580, DOI 10.2748/tmj/1178244175
- Paul Jaffard, Les systèmes d’idéaux, Travaux et Recherches Mathématiques, IV, Dunod, Paris, 1960 (French). MR 0114810
- Eben Matlis, Injective modules over Noetherian rings, Pacific J. Math. 8 (1958), 511–528. MR 99360
- Eben Matlis, Cotorsion modules, Mem. Amer. Math. Soc. 49 (1964), 66. MR 178025 —, Torsion-free modules, Univ. of Chicago Press, Chicago, Ill., 1972.
- Oscar Zariski and Pierre Samuel, Commutative algebra. Vol. II, The University Series in Higher Mathematics, D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto-London-New York, 1960. MR 0120249
Bibliographic Information
- © Copyright 1975 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 206 (1975), 201-212
- MSC: Primary 13G05
- DOI: https://doi.org/10.1090/S0002-9947-1975-0407004-3
- MathSciNet review: 0407004