Generalization of right alternative rings
HTML articles powered by AMS MathViewer
- by Irvin Roy Hentzel and Giulia Maria Piacentini Cattaneo
- Trans. Amer. Math. Soc. 207 (1975), 143-161
- DOI: https://doi.org/10.1090/S0002-9947-1975-0369451-8
- PDF | Request permission
Abstract:
We study nonassociative rings $R$ satisfying the conditions (1) $(ab,c,d) + (a,b,[c,d]) = a(b,c,d) + (a,c,d)b$ for all $a,b,c,d \in R$, and (2) $(x,x,x) = 0$ for all $x \in R$. We furthermore assume weakly characteristic not 2 and weakly characteristic not 3. As both (1) and (2) are consequences of the right alternative law, our rings are generalizations of right alternative rings. We show that rings satisfying (1) and (2) which are simple and have an idempotent $\ne 0, \ne 1$, are right alternative rings. We show by example that $(x,e,e)$ may be nonzero. In general, $R = R’ + (R,e,e)$ (additive direct sum) where $R’$ is a subring and $(R,e,e)$ is a nilpotent ideal which commutes elementwise with $R$. We examine $R’$ under the added assumption of Lie admissibility: (3) $(a,b,c) + (b,c,a) + (c,a,b) = 0$ for all $a,b,c \in R$. We generate the Peirce decomposition. If $R’$ has no trivial ideals contained in its center, the table for the multiplication of the summands is associative, and the nucleus of $R’$ contains ${R’_{10}} + {R’_{01}}$. Without the assumption on ideals, the table for the multiplication need not be associative; however, if the multiplication is defined in the most obvious way to force an associative table, the new ring will still satisfy (1), (2), (3).References
- A. A. Albert, Power-associative rings, Trans. Amer. Math. Soc. 64 (1948), 552–593. MR 27750, DOI 10.1090/S0002-9947-1948-0027750-7
- A. A. Albert, The structure of right alternative algebras, Ann. of Math. (2) 59 (1954), 408–417. MR 61096, DOI 10.2307/1969709
- Irvin Roy Hentzel, $(-1,\,1)$ rings, Proc. Amer. Math. Soc. 22 (1969), 367–374. MR 242909, DOI 10.1090/S0002-9939-1969-0242909-0
- Irvin Roy Hentzel, $(-1,\,1)$ algebras, Proc. Amer. Math. Soc. 24 (1970), 24–28. MR 248186, DOI 10.1090/S0002-9939-1970-0248186-7
- Erwin Kleinfeld, Alternative nil rings, Ann. of Math. (2) 66 (1957), 395–399. MR 87638, DOI 10.2307/1969897 —, Generalization of alternative rings. I, J. Algebra 18 (1971), 304-325. MR 43 #308.
- Erwin Kleinfeld, Generalization of alternative rings. I, II, J. Algebra 18 (1971), 304–325; ibid. 18 (1971), 326–339. MR 0274545, DOI 10.1016/0021-8693(71)90063-9
- Carl Maneri, Simple $(-1,\,1)$ rings with an idempotent, Proc. Amer. Math. Soc. 14 (1963), 110–117. MR 142596, DOI 10.1090/S0002-9939-1963-0142596-0
- M. Slater, The open case for simple alternative rings, Proc. Amer. Math. Soc. 19 (1968), 712–715. MR 224668, DOI 10.1090/S0002-9939-1968-0224668-X
- Harry F. Smith, Prime generalized alternative rings $I$ with nontrivial idempotent, Proc. Amer. Math. Soc. 39 (1973), 242–246. MR 313348, DOI 10.1090/S0002-9939-1973-0313348-X
- Armin Thedy, Right alternative rings, J. Algebra 37 (1975), no. 1, 1–43. MR 384888, DOI 10.1016/0021-8693(75)90086-1 —, Right alternative rings with Peirce decomposition, Preprint Series 17, Matematisk Institut, Aarhus Universitet, 1972 (unpublished).
Bibliographic Information
- © Copyright 1975 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 207 (1975), 143-161
- MSC: Primary 17A30
- DOI: https://doi.org/10.1090/S0002-9947-1975-0369451-8
- MathSciNet review: 0369451